[Peripheral artery disease II: femoropopliteal lesions].

Christos Rammos, Tienush Rassaf, Grigorios Korosoglou
Author Information
  1. Christos Rammos: Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg-Essen, Deutschland.
  2. Tienush Rassaf: Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg-Essen, Deutschland.
  3. Grigorios Korosoglou: Departments of Cardiology & Angiology, GRN Hospitals Weinheim & Eberbach, Roentgenstraße 1, 69469, Weinheim, Deutschland. gkorosoglou@hotmail.com.

Abstract

The endovascular treatment of the femoropopliteal segment is the most frequent revascularization option in patients with peripheral arterial occlusive disease (PAOD); however, the plain old balloon angioplasty has limitations, especially in complex and calcified lesions, and can lead to dissections and recoil. In order to improve the technical success and the efficacy of the endovascular treatment in complex, sometimes severely calcified or thrombotic lesions or also in lesions in mobile segments, a lesion preparation strategy before the actual lesion treatment is frequently applied. Lesion preparation methods include atherectomy, thrombectomy or intravascular lithotripsy. Through lesion preparation plaques and/or organized thrombi can be minimally invasively removed or calcium deposits can be even fragmented with low threshold barotrauma, without damaging the vessel wall. Subsequently, the definitive treatment of the lesion can be carried out using drug-coated balloons (DCB), bare metal stents (BMS), drug-eluting stents (DES) or a combination of these. Due to the heterogeneity of patient and lesion characteristics, no 'one fits all' strategy is so far available; however, the choice of the appropriate instruments should be carried out based on the patient and lesion characteristics present, whereby for the lesion-specific parameters the extent of the morphology and underlying pathology plays an important role.

Keywords

References

  1. Betge S, Engelbertz C, Espinola-Klein C et al (2023) Analysis of endovascular therapy for peripheral arterial disease in all German hospitals. Vasa 52(6):366–378 [PMID: 37799062]
  2. Fanelli F, Cannavale A, Gazzetti M et al (2014) Calcium burden assessment and impact on drug-eluting balloons in peripheral arterial disease. Cardiovasc Intervent Radiol 37(4):898–907 [DOI: 10.1007/s00270-014-0904-3]
  3. Schofthaler C, Troisi N, Torsello G et al (2024) Safety and effectiveness of the phoenix atherectomy device for endovascular treatment of common femoral and popliteal arteries: Results of the EN-MOBILE trial. Vasc Med. https://doi.org/10.1177/1358863X241231943 [DOI: 10.1177/1358863X241231943]
  4. Muller AM, Lohn-Kannengiesser L, Bradaric C et al (2023) Outcomes of endovascular treatment for popliteal artery disease. Vasa 52(6):386–393 [PMID: 37840269]
  5. Korosoglou G, Schmidt A, Lichtenberg M et al (2025) Global Algorithm for the Endovascular Treatment of Chronic Femoropopliteal Lesions: An Interdisciplinary Expert Opinion Statement. JACC Cardiovasc Interv (In press)
  6. Korosoglou G, Feld J, Langhoff R et al (2024) Safety and Effectiveness of Debulking for the Treatment of Infrainguinal Peripheral Artery Disease. Data From the Recording Courses of vascular Diseases Registry in 2910 Patients. Angiology. https://doi.org/10.1177/00033197241263381 [DOI: 10.1177/00033197241263381]
  7. Lichtenberg M, Korosoglou G (2019) Atherectomy plus antirestenotic therapy for SFA lesions: evolving evidence for better patency rates in complex lesions. J Cardiovasc Surg (torino) 60(2):205–211 [PMID: 30650960]
  8. Korosoglou G, Rammos C, Blessing E (2024) Crossing by or effective BYCROSSing in long & calcified peripheral lesions with a New Kid on the Block? Vasa 53(6):363–365 [DOI: 10.1024/0301-1526/a001150]
  9. Liebetrau D, Tessarek J, Elger F, Peters V, Scheurig-Munkler C, Hyhlik-Durr A (2024) Technical aspects of the new BYCROSS(TM) atherectomy device—preliminary results after 28 patients. Vasa 53(6):388–396 [DOI: 10.1024/0301-1526/a001151]
  10. Giusca S, Hagstotz S, Lichtenberg M et al (2022) Phoenix atherectomy for patients with peripheral artery disease. EuroIntervention 18(5):e432–e42 [DOI: 10.4244/EIJ-D-21-01070]
  11. Zeller T, Langhoff R, Rocha-Singh KJ et al (2017) Directional Atherectomy Followed by a Paclitaxel-Coated Balloon to Inhibit Restenosis and Maintain Vessel Patency: Twelve-Month Results of the DEFINITIVE AR Study. Circ Cardiovasc Interv 10(9):e4848 [DOI: 10.1161/CIRCINTERVENTIONS.116.004848]
  12. Babaev A, Halista M, Bakirova Z, Avtushka V, Matsumura M, Maehara A (2022) Directional versus orbital atherectomy of femoropopliteal artery lesions: Angiographic and intravascular ultrasound outcomes. Catheter Cardiovasc Interv 100(4):687–695 [DOI: 10.1002/ccd.30339]
  13. Dattilo R, Himmelstein SI, Cuff RF. The COMPLIANCE 360 degrees Trial (2014) a randomized, prospective, multicenter, pilot study comparing acute and long-term results of orbital atherectomy to balloon angioplasty for calcified femoropopliteal disease. J Invasive Cardiol 26(8):355–360 [PMID: 25091093]
  14. Dukic D, Martin K, Lichtenberg M et al (2023) Novel Therapeutic Concepts for Complex Femoropopliteal Lesions Using the Jetstream Atherectomy System. J Endovasc Ther. https://doi.org/10.1177/15266028231161246 [DOI: 10.1177/15266028231161246]
  15. Andrassy M, Lichtenberg M, Brodmann M, Andrassy J, Giusca S, Korosoglou G (2022) Jetstream Rotational Atherectomy and Drug Coated Balloon Angioplasty with In Stent Re-stenosis and Occlusions. A Two Centre Study. Eur J Vasc Endovasc Surg 64(6):733–734 [DOI: 10.1016/j.ejvs.2022.10.014]
  16. McKinsey JF, Zeller T, Rocha-Singh KJ, Jaff MR, Garcia LA, Investigators DL. Lower extremity revascularization using directional atherectomy (2014) 12-month prospective results of the DEFINITIVE LE study. JACC Cardiovasc Interv 7(8):923–933 [DOI: 10.1016/j.jcin.2014.05.006]
  17. Rocha-Singh KJ, Sachar R, DeRubertis BG et al (2021) Directional atherectomy before paclitaxel coated balloon angioplasty in complex femoropopliteal disease: The VIVA REALITY study. Catheter Cardiovasc Interv 98(3):549–558 [DOI: 10.1002/ccd.29777]
  18. Giannopoulos S, Secemsky EA, Mustapha JA et al (2020) Three-Year Outcomes of Orbital Atherectomy for the Endovascular Treatment of Infrainguinal Claudication or Chronic Limb-Threatening Ischemia. J Endovasc Ther 27(5):714–725 [DOI: 10.1177/1526602820935611]
  19. Freitas B, Steiner S, Bausback Y et al (2017) Rotarex Mechanical Debulking in Acute and Subacute Arterial Lesions. Angiology 68(3):233–241 [DOI: 10.1177/0003319716646682]
  20. Rammos C, Manzke A, Lortz J et al (2022) Mechanical atherothrombectomy improves endothelial function through plaque burden reduction in PAD. Vasa 51(6):377–385 [DOI: 10.1024/0301-1526/a001034]
  21. Wardle BG, Ambler GK, Radwan RW, Hinchliffe RJ, Twine CP (2020) Atherectomy for peripheral arterial disease. Cochrane Database Syst Rev 9(9):CD6680 [PMID: 32990327]
  22. Feldman DN, Armstrong EJ, Aronow HD et al (2018) SCAI consensus guidelines for device selection in femoral-popliteal arterial interventions. Catheter Cardiovasc Interv 92(1):124–140 [DOI: 10.1002/ccd.27635]
  23. Adams G, Shammas N, Mangalmurti S et al (2020) Intravascular Lithotripsy for Treatment of Calcified Lower Extremity Arterial Stenosis: Initial Analysis of the Disrupt PAD III Study. J Endovasc Ther 27(3):473–480 [DOI: 10.1177/1526602820914598]
  24. Sagris M, Ktenopoulos N, Soulaidopoulos S et al (2024) Intravascular lithotripsy in peripheral lesions with severe calcification and its use in TAVI procedure—a meta-analysis. Vasa 53(4):263–274 [DOI: 10.1024/0301-1526/a001133]
  25. Scheidhauer H, Moebius-Winkler S, Aftanski P, Schulze PC, Kretzschmar D (2024) Analysis of interventional treatment options of the common femoral artery—a retrospective single center experience. Vasa 53(4):227–236 [DOI: 10.1024/0301-1526/a001125]
  26. Brodmann M, Werner M, Holden A et al (2019) Primary outcomes and mechanism of action of intravascular lithotripsy in calcified, femoropopliteal lesions: Results of Disrupt PAD II. Catheter Cardiovasc Interv 93(2):335–342 [DOI: 10.1002/ccd.27943]
  27. Madhavan MV, Shahim B, Mena-Hurtado C, Garcia L, Crowley A, Parikh SA (2020) Efficacy and safety of intravascular lithotripsy for the treatment of peripheral arterial disease: An individual patient-level pooled data analysis. Catheter Cardiovasc Interv 95(5):959–968 [DOI: 10.1002/ccd.28729]
  28. Tepe G, Brodmann M, Werner M et al (2021) Intravascular Lithotripsy for Peripheral Artery Calcification: 30-Day Outcomes From the Randomized Disrupt PAD III Trial. JACC Cardiovasc Interv 14(12):1352–1361 [DOI: 10.1016/j.jcin.2021.04.010]
  29. Tepe G (2022) Intravascular Lithotripsy for Peripheral Artery Calcification: Mid-term Outcomes From the Randomized Disrupt PAD III Trial. J Soc Cardiovasc Angiogr Interv 1(4)
  30. Caradu C, Lakhlifi E, Colacchio EC et al (2019) Systematic review and updated meta-analysis of the use of drug-coated balloon angioplasty versus plain old balloon angioplasty for femoropopliteal arterial disease. J Vasc Surg 70(3):981–995 (e10) [DOI: 10.1016/j.jvs.2019.01.080]
  31. Katsanos K, Spiliopoulos S, Kitrou P, Krokidis M, Karnabatidis D (2018) Risk of Death Following Application of Paclitaxel-Coated Balloons and Stents in the Femoropopliteal Artery of the Leg: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 7(24):e11245 [DOI: 10.1161/JAHA.118.011245]
  32. Freisinger E, Koeppe J, Gerss J et al (2020) Mortality after use of paclitaxel-based devices in peripheral arteries: a real-world safety analysis. Eur Heart J 41(38):3732–3739 [DOI: 10.1093/eurheartj/ehz698]
  33. Teichgraber U, Ingwersen M, Platzer S et al (2021) Head-to-head comparison of sirolimus- versus paclitaxel-coated balloon angioplasty in the femoropopliteal artery: study protocol for the randomized controlled SIRONA trial. Trials 22(1):665 [DOI: 10.1186/s13063-021-05631-9]
  34. Stavroulakis K, Torsello G, Manal A et al (2016) Results of primary stent therapy for femoropopliteal peripheral arterial disease at 7 years. J Vasc Surg 64(6):1696–1702 [DOI: 10.1016/j.jvs.2016.05.073]
  35. Garcia L, Jaff MR, Metzger C et al (2015) Wire-Interwoven Nitinol Stent Outcome in the Superficial Femoral and Proximal Popliteal Arteries: Twelve-Month Results of the SUPERB Trial. Circ Cardiovasc Interv 8:5 [DOI: 10.1161/CIRCINTERVENTIONS.113.000937]
  36. Goueffic Y, Torsello G, Zeller T et al (2022) Efficacy of a Drug-Eluting Stent Versus Bare Metal Stents for Symptomatic Femoropopliteal Peripheral Artery Disease: Primary Results of the EMINENT Randomized Trial. Circulation 146(21):1564–1576 [DOI: 10.1161/CIRCULATIONAHA.122.059606]
  37. Muller-Hulsbeck S, Benko A, Soga Y et al (2021) Two-Year Efficacy and Safety Results from the IMPERIAL Randomized Study of the Eluvia Polymer-Coated Drug-Eluting Stent and the Zilver PTX Polymer-free Drug-Coated Stent. Cardiovasc Intervent Radiol 44(3):368–375 [DOI: 10.1007/s00270-020-02693-1]
  38. ANGIOLOGIE DGF. S3-Leitlinie zur Diagnostik, Therapie und Nachsorge der peripheren arteriellen Verschlusskrankheit AWMF Online 2024.
  39. Bausback Y, Wittig T, Schmidt A et al (2019) Drug-Eluting Stent Versus Drug-Coated Balloon Revascularization in Patients With Femoropopliteal Arterial Disease. J Am Coll Cardiol 73(6):667–679 [DOI: 10.1016/j.jacc.2018.11.039]
  40. Tepe G. SPORTS Trial. TCT October 24 (2023) San Francisco. CA (2023; abstract)
  41. Lammer J, Zeller T, Hausegger KA et al (2015) Sustained benefit at 2 years for covered stents versus bare-metal stents in long SFA lesions: the VIASTAR trial. Cardiovasc Intervent Radiol 38(1):25–32 [DOI: 10.1007/s00270-014-1024-9]
  42. Tosaka A, Soga Y, Iida O et al (2012) Classification and clinical impact of restenosis after femoropopliteal stenting. J Am Coll Cardiol 59(1):16–23 [DOI: 10.1016/j.jacc.2011.09.036]
  43. Cassese S, Wolf F, Ingwersen M et al (2018) Drug-Coated Balloon Angioplasty for Femoropopliteal In-Stent Restenosis. Circ Cardiovasc Interv 11(12):e7055 [DOI: 10.1161/CIRCINTERVENTIONS.118.007055]
  44. Korosoglou G, Torsello G, Saratzis A et al (2023) ENdovascular Versus SUrgical Treatment for All-comer Patients With PROsthetic Bypass Graft Occlusion: The Multicentre ENSUPRO Study. Eur J Vasc Endovasc Surg

MeSH Term

Humans
Popliteal Artery
Femoral Artery
Peripheral Arterial Disease
Angioplasty, Balloon
Atherectomy
Endovascular Procedures
Drug-Eluting Stents
Stents
Thrombectomy
Lithotripsy

Word Cloud

Created with Highcharts 10.0.0lesiontreatmentcandiseaselesionspreparationendovascularfemoropoplitealocclusivehoweverangioplastycomplexcalcifiedstrategylithotripsycarriedstentspatientcharacteristicssegmentfrequentrevascularizationoptionpatientsperipheralarterialPAODplainoldballoonlimitationsespeciallyleaddissectionsrecoilorderimprovetechnicalsuccessefficacysometimesseverelythromboticalsomobilesegmentsactualfrequentlyappliedLesionmethodsincludeatherectomythrombectomyintravascularplaquesand/ororganizedthrombiminimallyinvasivelyremovedcalciumdepositsevenfragmentedlowthresholdbarotraumawithoutdamagingvesselwallSubsequentlydefinitiveusingdrug-coatedballoonsDCBbaremetalBMSdrug-elutingDEScombinationDueheterogeneity'onefitsall'faravailablechoiceappropriateinstrumentsbasedpresentwherebylesion-specificparametersextentmorphologyunderlyingpathologyplaysimportantrole[PeripheralarteryII:lesions]AtherectomyBalloonChronictotalocclusionIntravascularPeripheral

Similar Articles

Cited By