Agricultural fertilization significantly enhances amplitude of land-atmosphere CO exchange.

Danica L Lombardozzi, William R Wieder, Gretchen Keppel-Aleks, Jiameng Lai, Zhenqi Luo, Ying Sun, Isla R Simpson, David M Lawrence, Gordon B Bonan, Xin Lin, Charles D Koven, Pierre Friedlingstein, Keith Lindsay
Author Information
  1. Danica L Lombardozzi: Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA. Danica.Lombardozzi@colostate.edu. ORCID
  2. William R Wieder: Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA. ORCID
  3. Gretchen Keppel-Aleks: Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA. ORCID
  4. Jiameng Lai: School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USA. ORCID
  5. Zhenqi Luo: School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USA. ORCID
  6. Ying Sun: School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USA. ORCID
  7. Isla R Simpson: Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA. ORCID
  8. David M Lawrence: Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA. ORCID
  9. Gordon B Bonan: Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA. ORCID
  10. Xin Lin: Laboratoire des Sciences du Climat et de l'Environment, Gif sur Yvette Cedex, France. ORCID
  11. Charles D Koven: Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. ORCID
  12. Pierre Friedlingstein: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK. ORCID
  13. Keith Lindsay: Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO, USA.

Abstract

Observations show an increase in the seasonal cycle amplitude of CO in northern latitudes over the past half century. Although multiple drivers contribute, observations and inversion models cannot quantitatively account for the factors contributing to the increased CO amplitude and older versions of Earth System Models (ESMs) do not simulate it. Here we show that several current generation ESMs are closer to the observed CO amplitude and highlight that in the Community Earth System Model (CESM) agricultural nitrogen (N) fertilization increases CO amplitude by 1-3 ppm throughout the Northern Hemisphere and up to 9 ppm in agricultural hotspots. While agricultural N fertilization is the largest contributor to the enhanced amplitude (45%) in Northern Hemisphere land-atmosphere carbon fluxes in CESM, higher CO concentrations and warmer temperatures also contribute, though to a lesser extent (40% and 18% respectively). Our results emphasize the fundamental role of agricultural management in Northern Hemisphere carbon cycle feedbacks and illustrate that agricultural N fertilization should be considered in future carbon cycle simulations.

References

  1. Science. 2016 Feb 12;351(6274):696-9 [PMID: 26797146]
  2. Nature. 2008 Jan 17;451(7176):293-6 [PMID: 18202647]
  3. Geosci Model Dev. 2016;9(12):4521-4545 [PMID: 29697697]
  4. Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130164 [PMID: 23713126]
  5. Nature. 2014 Nov 20;515(7527):398-401 [PMID: 25409830]
  6. Nature. 2018 Oct;562(7725):110-114 [PMID: 30283105]
  7. Global Biogeochem Cycles. 2019 Oct;33(10):1289-1309 [PMID: 31894175]
  8. Nature. 2014 Nov 20;515(7527):394-7 [PMID: 25409829]
  9. Ecology. 2008 Feb;89(2):371-9 [PMID: 18409427]
  10. Nature. 2014 Nov 20;515(7527):351-2 [PMID: 25409823]
  11. Glob Chang Biol. 2020 Aug;26(8):4462-4477 [PMID: 32415896]
  12. Biogeosciences. 2017;14(18):4101-4124 [PMID: 29290755]
  13. Sci Data. 2020 Jul 9;7(1):225 [PMID: 32647314]
  14. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12302-8 [PMID: 22826253]
  15. Glob Chang Biol. 2018 Apr;24(4):1470-1487 [PMID: 29235213]
  16. Glob Chang Biol. 2018 Feb;24(2):608-616 [PMID: 28915315]
  17. J Hydrometeorol. 2016 Jun;17(6):1705-1723 [PMID: 29630073]
  18. Nature. 2016 Oct 27;538(7626):499-501 [PMID: 27680704]
  19. Nature. 2008 Jan 3;451(7174):49-52 [PMID: 18172494]
  20. Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9575-9580 [PMID: 28827323]
  21. Science. 2013 Sep 6;341(6150):1085-9 [PMID: 23929948]
  22. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):E1327-33 [PMID: 24706867]
  23. Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21079-21087 [PMID: 32817563]
  24. Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29526-29534 [PMID: 33168728]
  25. Nat Commun. 2019 Feb 21;10(1):885 [PMID: 30792385]

Word Cloud

Created with Highcharts 10.0.0amplitudeCOagriculturalfertilizationcycleNNorthernHemispherecarbonshowcontributeEarthSystemESMsCESMppmland-atmosphereObservationsincreaseseasonalnorthernlatitudespasthalfcenturyAlthoughmultipledriversobservationsinversionmodelsquantitativelyaccountfactorscontributingincreasedolderversionsModelssimulateseveralcurrentgenerationcloserobservedhighlightCommunityModelnitrogenincreases1-3throughout9hotspotslargestcontributorenhanced45%fluxeshigherconcentrationswarmertemperaturesalsothoughlesserextent40%18%respectivelyresultsemphasizefundamentalrolemanagementfeedbacksillustrateconsideredfuturesimulationsAgriculturalsignificantlyenhancesexchange

Similar Articles

Cited By