Polyphosphate: The "Dark Matter" of Bacterial Chromatin Structure.

Lisa R Racki, Lydia Freddolino
Author Information
  1. Lisa R Racki: Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, USA. ORCID
  2. Lydia Freddolino: Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA.

Abstract

Polyphosphate (polyP), broadly defined, consists of a chain of orthophosphate units connected by phosphoanhydride bonds. polyP is the only universal inorganic biopolymer known to date and is present in all three domains of life. At a first approximation polyP appears to be a simple, featureless, and flexible polyanion. A growing body of evidence suggests that polyP is not as featureless as originally thought: it can form a wide variety of complexes and condensates through association with proteins, nucleic acids, and inorganic ions. It is becoming apparent that the emergent properties of the condensate superstructures it forms are both complex and dynamic. Importantly, growing evidence suggests that polyP can affect bacterial chromatin, both directly and by mediating interactions between DNA and proteins. In an increasing number of contexts, it is becoming apparent that polyP profoundly impacts both chromosomal structure and gene regulation in bacteria, thus serving as a rarely considered, but highly important, component in bacterial nucleoid biology.

Keywords

References

  1. Microbiology (Reading). 2020 Sep;166(9):861-866 [PMID: 32634088]
  2. PLoS Genet. 2020 Oct 30;16(10):e1009085 [PMID: 33125364]
  3. Biomacromolecules. 2014 Nov 10;15(11):3976-84 [PMID: 25268994]
  4. EMBO J. 2023 Jun 15;42(12):e110286 [PMID: 37082862]
  5. Mol Cell. 2015 Apr 2;58(1):71-82 [PMID: 25773596]
  6. Biochemistry. 2009 Feb 3;48(4):667-75 [PMID: 19132923]
  7. Environ Sci Technol. 2019 Feb 5;53(3):1536-1544 [PMID: 30589545]
  8. Nucleic Acids Res. 2024 Mar 21;52(5):2323-2339 [PMID: 38142457]
  9. Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2440-E2449 [PMID: 28265086]
  10. Mol Microbiol. 2024 Dec;122(6):914-928 [PMID: 39545931]
  11. EMBO J. 2018 Jun 1;37(11): [PMID: 29669858]
  12. J Bacteriol. 1985 Apr;162(1):242-7 [PMID: 3884591]
  13. Nat Chem. 2022 Feb;14(2):224-231 [PMID: 34992286]
  14. Nat Commun. 2023 Dec 5;14(1):7699 [PMID: 38052788]
  15. Nat Chem. 2023 Dec;15(12):1693-1704 [PMID: 37932412]
  16. Protein Eng. 1995 Jan;8(1):63-70 [PMID: 7770455]
  17. Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18540-18549 [PMID: 32675239]
  18. Virulence. 2015;6(8):814-8 [PMID: 26537695]
  19. J Am Chem Soc. 2020 Oct 28;142(43):18407-18421 [PMID: 33075224]
  20. J Bacteriol. 1996 Mar;178(5):1394-400 [PMID: 8631717]
  21. Nucleic Acids Res. 2020 Jun 4;48(10):5457-5466 [PMID: 32282902]
  22. Nature. 2017 Jul 13;547(7662):241-245 [PMID: 28636597]
  23. Biophys J. 2021 Apr 6;120(7):1123-1138 [PMID: 33186556]
  24. J Med Microbiol. 2000 Jun;49(6):513-519 [PMID: 10847204]
  25. Mol Cell. 2024 May 2;84(9):1811-1815.e3 [PMID: 38701742]
  26. Nat Rev Mol Cell Biol. 2021 Mar;22(3):183-195 [PMID: 32632317]
  27. Science. 1958 Apr 11;127(3302):814-5 [PMID: 13543336]
  28. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1710-9 [PMID: 26951678]
  29. Nucleic Acids Res. 2014 Oct;42(18):11275-90 [PMID: 25232095]
  30. Mol Microbiol. 2012 Nov;86(3):513-23 [PMID: 22934804]
  31. Sci Adv. 2021 Dec 24;7(52):eabk0233 [PMID: 34936433]
  32. Microb Physiol. 2021;31(2):163-177 [PMID: 34015783]
  33. Science. 2011 Sep 9;333(6048):1445-9 [PMID: 21903814]
  34. Arch Biochem Biophys. 1976 Jul;175(1):114-20 [PMID: 952512]
  35. Nat Commun. 2024 Oct 26;15(1):9258 [PMID: 39462120]
  36. Front Mol Biosci. 2016 Jul 28;3:36 [PMID: 27517037]
  37. Science. 2010 Mar 5;327(5970):1258-61 [PMID: 20203050]
  38. Microb Biotechnol. 2017 Nov;10(6):1323-1337 [PMID: 28425176]
  39. Nature. 2019 Nov;575(7782):390-394 [PMID: 31618757]
  40. Nat Chem Biol. 2011 Jul 18;7(8):512-8 [PMID: 21769098]
  41. Cell. 2004 Apr 30;117(3):299-310 [PMID: 15109491]
  42. Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3773-8 [PMID: 21321206]
  43. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8452-7 [PMID: 24912163]
  44. Mol Microbiol. 2017 Jun;104(6):1037-1051 [PMID: 28370665]
  45. Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26206-26217 [PMID: 33020264]
  46. Trends Microbiol. 2021 Nov;29(11):1013-1023 [PMID: 33632603]
  47. J Bacteriol. 1998 Apr;180(7):1841-7 [PMID: 9537383]
  48. Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16326-16331 [PMID: 31366629]
  49. Front Microbiol. 2023 Feb 28;14:1116776 [PMID: 36925468]
  50. Res Microbiol. 1991 Feb-Apr;142(2-3):309-20 [PMID: 1925029]
  51. J Bacteriol. 1985 Jun;162(3):960-71 [PMID: 3922958]
  52. mBio. 2022 Jun 28;13(3):e0246321 [PMID: 35435704]
  53. Proc Natl Acad Sci U S A. 2021 Jan 12;118(2): [PMID: 33376208]
  54. Nucleic Acids Res. 2007;35(3):951-61 [PMID: 17259223]
  55. Biochemistry. 1968 Nov;7(11):4030-4 [PMID: 4972613]
  56. J Bacteriol. 1990 Oct;172(10):5544-54 [PMID: 1698761]
  57. Biochim Biophys Acta. 1964 May 4;85:283-95 [PMID: 14212975]
  58. Int J Nanomedicine. 2022 Nov 30;17:5825-5850 [PMID: 36474526]
  59. Biotechnol Bioeng. 2021 Jan;118(1):491-505 [PMID: 32918485]
  60. Mol Microbiol. 2004 Mar;51(6):1525-33 [PMID: 15009882]
  61. Mol Microbiol. 2014 Apr;92(2):399-412 [PMID: 24612454]
  62. Curr Opin Microbiol. 2016 Apr;30:133-138 [PMID: 26907610]
  63. Mol Cell. 2018 Sep 20;71(6):1027-1039.e14 [PMID: 30197298]
  64. mSphere. 2024 Oct 29;9(10):e0068624 [PMID: 39365057]
  65. Mol Biol Cell. 2013 Oct;24(20):3177-86 [PMID: 23985321]
  66. PLoS Biol. 2008 Jun 24;6(6):e150 [PMID: 18593213]
  67. Annu Rev Biochem. 2009;78:605-47 [PMID: 19344251]
  68. Arch Microbiol. 1976 Jul;108(3):243-7 [PMID: 942279]
  69. J Bacteriol. 2004 Jul;186(14):4596-604 [PMID: 15231792]
  70. Nucleic Acids Res. 2020 Apr 17;48(7):3987-3997 [PMID: 32133526]
  71. Appl Environ Microbiol. 2015 Dec;81(24):8277-93 [PMID: 26407880]
  72. Plant Biol (Stuttg). 2014 Jan;16(1):258-63 [PMID: 23574545]
  73. Mol Cell. 2020 Jul 16;79(2):293-303.e4 [PMID: 32679076]
  74. Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2313004121 [PMID: 38564631]
  75. J Bacteriol. 2019 Apr 9;201(9): [PMID: 30745375]
  76. Trends Biochem Sci. 2003 Oct;28(10):515-7 [PMID: 14559177]
  77. Proc Natl Acad Sci U S A. 2024 Jan 9;121(2):e2309664121 [PMID: 38170746]
  78. Front Microbiol. 2023 Jun 15;14:1203805 [PMID: 37396362]
  79. BMC Microbiol. 2012 Nov 16;12:262 [PMID: 23157596]
  80. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14264-9 [PMID: 10588694]
  81. Mol Microbiol. 2010 Apr;76(1):173-89 [PMID: 20149103]
  82. Virology. 1957 Oct;4(2):237-64 [PMID: 13496543]
  83. J Proteomics. 2019 Mar 1;194:14-24 [PMID: 30597312]
  84. Cell. 2018 Aug 23;174(5):1188-1199.e14 [PMID: 30057118]
  85. J Biol Chem. 1994 Mar 4;269(9):6290-5 [PMID: 8119977]
  86. Appl Environ Microbiol. 2018 May 17;84(11): [PMID: 29625978]
  87. Mol Microbiol. 2011 Jan;79(2):402-18 [PMID: 21219460]
  88. Mol Cell. 2024 May 2;84(9):1802-1810.e4 [PMID: 38701741]
  89. Microb Physiol. 2022;32(3-4):71-82 [PMID: 35168233]
  90. Mol Microbiol. 2012 Jul;85(1):21-38 [PMID: 22624875]
  91. Appl Environ Microbiol. 2007 Feb;73(4):1383-7 [PMID: 17158616]
  92. Transcription. 2021 Aug;12(4):182-218 [PMID: 34499567]
  93. EMBO J. 2015 Oct 14;34(20):2557-73 [PMID: 26373314]
  94. Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15565-15572 [PMID: 32576694]
  95. Annu Rev Microbiol. 2008;62:35-51 [PMID: 18454629]
  96. Nat Commun. 2022 Sep 26;13(1):5643 [PMID: 36163138]
  97. J Biol Chem. 2023 May;299(5):104637 [PMID: 36963493]
  98. Cell. 2014 Jan 16;156(1-2):183-94 [PMID: 24361104]
  99. Environ Microbiol. 2020 Sep;22(9):3922-3936 [PMID: 32705785]
  100. mBio. 2020 Jul 28;11(4): [PMID: 32723918]
  101. Nat Commun. 2021 Sep 10;12(1):5368 [PMID: 34508082]
  102. Nat Rev Genet. 2002 Nov;3(11):889-95 [PMID: 12415319]
  103. Nat Rev Mol Cell Biol. 2021 Mar;22(3):196-213 [PMID: 33510441]
  104. Angew Chem Int Ed Engl. 2020 Feb 10;59(7):2679-2683 [PMID: 31743562]
  105. Anal Chem. 2020 Mar 17;92(6):4167-4176 [PMID: 32039586]
  106. J Bacteriol. 1999 Feb;181(3):858-68 [PMID: 9922249]
  107. J Bacteriol. 2000 Jul;182(13):3613-8 [PMID: 10850972]
  108. Cell. 2019 May 30;177(6):1632-1648.e20 [PMID: 31150626]
  109. Cell Rep. 2020 Oct 27;33(4):108318 [PMID: 33113373]
  110. EMBO J. 2011 Jan 5;30(1):154-64 [PMID: 21113127]
  111. Chem Rev. 2008 Nov;108(11):4694-715 [PMID: 18975924]
  112. Sci Rep. 2018 Nov 14;8(1):16792 [PMID: 30429520]
  113. Elife. 2018 Dec 06;7: [PMID: 30520729]
  114. Small. 2024 Dec;20(50):e2402871 [PMID: 39239997]
  115. Microbiol Rev. 1985 Mar;49(1):81-99 [PMID: 3157043]
  116. Front Cell Infect Microbiol. 2012 May 24;2:63 [PMID: 22919654]
  117. PLoS One. 2013;8(2):e56904 [PMID: 23457638]
  118. J Bacteriol. 2013 Sep;195(17):3940-6 [PMID: 23813732]
  119. Yeast. 2024 Oct;41(10):593-604 [PMID: 39262085]
  120. Cell. 2007 Mar 9;128(5):865-75 [PMID: 17350574]
  121. Bull Soc Chim Biol (Paris). 1963 Oct 4;45:887-900 [PMID: 14095202]
  122. J Clin Microbiol. 2003 Nov;41(11):4991-7 [PMID: 14605129]
  123. Eur J Biochem. 2001 Aug;268(15):4359-65 [PMID: 11488932]
  124. J Biol Chem. 2020 Aug 28;295(35):12355-12367 [PMID: 32532816]
  125. Arch Biochem Biophys. 1993 Jan;300(1):309-19 [PMID: 8380966]
  126. Science. 2020 Dec 11;370(6522):1317-1323 [PMID: 33303613]
  127. Elife. 2023 Feb 16;12: [PMID: 36795466]
  128. Wiley Interdiscip Rev RNA. 2020 Nov;11(6):e1599 [PMID: 32445438]
  129. Arch Mikrobiol. 1966 May 9;53(4):371-88 [PMID: 5989427]
  130. J Bacteriol. 2012 Jan;194(1):28-35 [PMID: 22020649]
  131. J Bacteriol. 2012 Sep;194(18):4857-66 [PMID: 22753054]
  132. PLoS Pathog. 2023 Jan 25;19(1):e1011023 [PMID: 36696456]
  133. Commun Biol. 2024 Apr 27;7(1):508 [PMID: 38678067]
  134. Science. 2023 Mar 17;379(6637):1149-1156 [PMID: 36927025]
  135. Science. 2019 Jul 26;365(6451):342-347 [PMID: 31296649]
  136. Mol Microbiol. 2016 Aug;101(3):367-80 [PMID: 27072996]
  137. J Bacteriol. 2003 Aug;185(16):4844-50 [PMID: 12897004]
  138. J Biol Chem. 2019 Jul 19;294(29):11311-11322 [PMID: 31171718]
  139. Trends Microbiol. 2012 Sep;20(9):411-8 [PMID: 22672910]

Grants

  1. DP2 GM140918/NIGMS NIH HHS
  2. DP2-GM-739-140918/NIH HHS
  3. R35-GM-128637/NIH HHS
  4. DP2-GM-739-140918/NIH HHS
  5. R35-GM-128637/NIH HHS

MeSH Term

Polyphosphates
Chromatin
Bacteria
DNA, Bacterial
Gene Expression Regulation, Bacterial
Bacterial Proteins
Chromosomes, Bacterial

Chemicals

Polyphosphates
Chromatin
DNA, Bacterial
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0polyPinorganicfeaturelessgrowingevidencesuggestscanproteinsbecomingapparentbacterialchromatinnucleoidPolyphosphatebroadlydefinedconsistschainorthophosphateunitsconnectedphosphoanhydridebondsPolyPuniversalbiopolymerknowndatepresentthreedomainslifefirstapproximationappearssimpleflexiblepolyanionbodyoriginallythought:formwidevarietycomplexescondensatesassociationnucleicacidsionsemergentpropertiescondensatesuperstructuresformscomplexdynamicImportantlyaffectdirectlymediatinginteractionsDNAincreasingnumbercontextsprofoundlyimpactschromosomalstructuregeneregulationbacteriathusservingrarelyconsideredhighlyimportantcomponentbiologyPolyphosphate:"DarkMatter"BacterialChromatinStructurebiophysicspolyphosphate

Similar Articles

Cited By

No available data.