Protective impacts of bamboo leaf flavonoids in stressed broilers induced by diquat: Insight of antioxidant, immune response and intestinal barrier function.

Qilu Zhou, Sikandar Ali, Xueyan Shi, Guangtian Cao, Jie Feng, Caimei Yang, Ruiqiang Zhang
Author Information
  1. Qilu Zhou: College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, Zhejiang, China.
  2. Sikandar Ali: Zhejiang Vegamax Biotechnology Co., Ltd., Anji 313300, Zhejiang, China.
  3. Xueyan Shi: College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, Zhejiang, China.
  4. Guangtian Cao: College of Quality and Standardization, China Jiliang University, Hangzhou 310018, Zhejiang, China.
  5. Jie Feng: College of Animal Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
  6. Caimei Yang: College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, Zhejiang, China.
  7. Ruiqiang Zhang: College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, Zhejiang, China.

Abstract

This research explored the protective impact of bamboo leaf flavonoids (BLF) in diquat (DQ) stressed broilers; providing insight of antioxidant, immune response and intestinal barrier function. This experiment consisted of two parts. In the first, 240 chicks were allotted to 2 groups with 8 replicates and 15 chicks per replicate. Treatments consisted of a basic feed (control group, CON) and the basic feed plus 1000 mg/kg BLF (BLF group, BLF) for 28 d, respectively. Then, following the conclusion of the first part, 16 healthy broilers were selected from the CON group and the BLF group. They formed the second part of the experiment, and were allotted to 4 treatments with 8 broilers each: CON-no stress (CON-NS) group, CON-DQ group, BLF-NS group and the BLF-DQ group. Broilers were separately injected intraperitoneally with DQ solution at 40 mg/kg body weight or the same dose of phosphate buffer saline. The results revealed adding BLF to diet reduced the ratio of feed to weight gain of broilers compared to the basic feed group ( = 0.021). In comparison to the CON-NS group, BLF improved the levels of serum and jejunal mucosa total antioxidant capacity, immunoglobulin M, serum catalase, immunoglobulin A, interleukin 10, jejunal mucosa interleukin 4, cecal butyric acid, valeric acid, isobutyric acid, isovaleric acid, upregulated zonula occludens-1 (), occludin () and claudin-1 () expressions, and reduced the levels of jejunal mucosa malondialdehyde (MDA), interleukin 1β, interleukin 6 and serum diamine oxidase ( < 0.05). Diquat stress elevated the contents of serum MDA, D-lactate, jejunal mucosa tumor necrosis factor α, reactive oxygen species and relative abundance, downregulated , and expressions, and reduced Sobs, Chao and Ace indices ( < 0.05). Compared with CON-NS group, the concentration of isovaleric acid in the BLF-DQ group was higher ( < 0.05). In conclusion, by establishing a DQ stress injury model, it was elucidated that BLF may enhance antioxidant capacity, strengthen immunity, regulate volatile fatty acid contents, improve intestinal morphology, microbiota and other intestinal barrier functions, so as to mitigate the injury induced by oxidative stress in broilers.

Keywords

References

  1. Int Orthop. 2014 Jun;38(6):1303-9 [PMID: 24402554]
  2. Biomed Pharmacother. 2021 Aug;140:111542 [PMID: 34088571]
  3. Poult Sci. 2021 Mar;100(3):100919 [PMID: 33518324]
  4. Poult Sci. 2021 Jul;100(7):101143 [PMID: 34062442]
  5. J Anim Sci Biotechnol. 2024 Feb 18;15(1):25 [PMID: 38369501]
  6. Animals (Basel). 2023 Oct 07;13(19): [PMID: 37835736]
  7. Molecules. 2020 Jan 18;25(2): [PMID: 31963759]
  8. Front Nutr. 2022 Mar 03;9:848532 [PMID: 35308272]
  9. J Med Food. 2015 Apr;18(4):453-9 [PMID: 25394178]
  10. J Food Sci. 2019 Jun;84(6):1609-1620 [PMID: 31116430]
  11. Pharmacol Res. 2019 Oct;148:104417 [PMID: 31473343]
  12. J Anim Sci. 2018 May 04;96(5):1795-1805 [PMID: 29562342]
  13. Animals (Basel). 2021 Jul 02;11(7): [PMID: 34359118]
  14. Poult Sci. 2024 Jun;103(6):103649 [PMID: 38552567]
  15. Nature. 2017 Nov 30;551(7682):648-652 [PMID: 29168502]
  16. Curr Biol. 2014 May 19;24(10):R453-62 [PMID: 24845678]
  17. Nutrients. 2020 Apr 23;12(4): [PMID: 32340206]
  18. J Appl Microbiol. 2016 Jan;120(1):195-204 [PMID: 26480894]
  19. AMB Express. 2021 Sep 3;11(1):125 [PMID: 34480270]
  20. Poult Sci. 2017 Jan 1;96(1):74-82 [PMID: 27486257]
  21. J Sci Food Agric. 2024 Sep;104(12):7656-7667 [PMID: 38770921]
  22. J Agric Food Chem. 2017 Aug 9;65(31):6665-6673 [PMID: 28726396]
  23. Arch Toxicol. 2015 Oct;89(10):1811-25 [PMID: 25693864]
  24. Front Vet Sci. 2019 Jan 31;5:348 [PMID: 30766877]
  25. Anim Sci J. 2020 Jan;91(1):e13387 [PMID: 32468650]
  26. Poult Sci. 2019 Dec 1;98(12):6787-6796 [PMID: 31289827]
  27. J Anim Sci Biotechnol. 2023 Jan 18;14(1):14 [PMID: 36653873]
  28. Materials (Basel). 2021 Apr 15;14(8): [PMID: 33921014]
  29. J Membr Biol. 2020 Jun;253(3):221-228 [PMID: 32328687]
  30. J Anim Sci Biotechnol. 2023 Apr 6;14(1):52 [PMID: 37024991]
  31. Planta Med. 2014 Dec;80(18):1678-84 [PMID: 25317773]
  32. Nat Rev Microbiol. 2021 Jan;19(1):55-71 [PMID: 32887946]
  33. Antioxidants (Basel). 2019 Jul 22;8(7): [PMID: 31336672]
  34. BMC Plant Biol. 2017 Mar 20;17(1):64 [PMID: 28320327]
  35. Anim Nutr. 2023 Aug 30;15:187-196 [PMID: 38023378]
  36. Biomed Res Int. 2020 Jan 3;2020:2032057 [PMID: 31998782]
  37. Poult Sci. 2021 Nov;100(11):101442 [PMID: 34607150]
  38. Crit Rev Food Sci Nutr. 2023;63(3):378-393 [PMID: 34278842]
  39. Mitochondrion. 2020 Mar;51:105-117 [PMID: 31972372]
  40. Phytomedicine. 2024 Jun;128:155523 [PMID: 38489893]
  41. Nat Rev Drug Discov. 2013 Feb;12(2):147-68 [PMID: 23334208]
  42. Animals (Basel). 2019 Sep 18;9(9): [PMID: 31540467]
  43. Poult Sci. 2024 May;103(5):103621 [PMID: 38507829]
  44. Pharmacol Ther. 2022 Jul;235:108159 [PMID: 35183589]
  45. Oxid Med Cell Longev. 2020 Feb 10;2020:8569237 [PMID: 32104541]
  46. Mediators Inflamm. 2015;2015:918361 [PMID: 26273145]
  47. Front Nutr. 2022 May 24;9:888745 [PMID: 35685878]
  48. Poult Sci. 2023 Apr;102(4):102536 [PMID: 36764136]
  49. Biochim Biophys Acta. 1988 Apr 7;939(2):238-46 [PMID: 3355816]
  50. PLoS One. 2021 May 12;16(5):e0251462 [PMID: 33979394]
  51. Asian-Australas J Anim Sci. 2014 Jul;27(7):917-25 [PMID: 25050031]
  52. J Biol Chem. 2017 Oct 6;292(40):16697-16708 [PMID: 28848050]

Word Cloud

Created with Highcharts 10.0.0groupBLFbroilersacidantioxidantintestinalbarrierfeedstressserumjejunalmucosainterleukinleafDQfunctionbasicCON-NSreduced< 005bambooflavonoidsstressedimmuneresponseexperimentconsistedfirstchicksallotted8CONconclusionpart4BLF-DQweightlevelscapacityimmunoglobulinisovalericexpressionsMDADiquatcontentsinjuryinducedresearchexploredprotectiveimpactdiquatprovidinginsighttwoparts2402groupsreplicates15perreplicateTreatmentscontrolplus1000 mg/kg28 drespectivelyfollowing16healthyselectedformedsecondtreatmentseach:CON-noCON-DQBLF-NSBroilersseparatelyinjectedintraperitoneallysolution40 mg/kgbodydosephosphatebuffersalineresultsrevealedaddingdietratiogaincompared = 0021comparisonimprovedtotalMcatalase10cecalbutyricvalericisobutyricupregulatedzonulaoccludens-1occludinclaudin-1malondialdehyde6diamineoxidaseelevatedD-lactatetumornecrosisfactorαreactiveoxygenspeciesrelativeabundancedownregulatedSobsChaoAceindicesComparedconcentrationhigherestablishingmodelelucidatedmayenhancestrengthenimmunityregulatevolatilefattyimprovemorphologymicrobiotafunctionsmitigateoxidativeProtectiveimpactsdiquat:InsightAntioxidantBambooflavonoidBroilerGrowthperformanceIntestinal

Similar Articles

Cited By