Machine Learning Approaches to Prognostication in Traumatic Brain Injury.

Neeraj Badjatia, Jamie Podell, Ryan B Felix, Lujie Karen Chen, Kenneth Dalton, Tina I Wang, Shiming Yang, Peter Hu
Author Information
  1. Neeraj Badjatia: Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, USA. nbadjatia@som.umaryland.edu. ORCID
  2. Jamie Podell: Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, USA.
  3. Ryan B Felix: Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, USA. ORCID
  4. Lujie Karen Chen: Department of Information Systems, University of Maryland, Baltimore County, Baltimore, MD, USA. ORCID
  5. Kenneth Dalton: Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, USA.
  6. Tina I Wang: Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA. ORCID
  7. Shiming Yang: Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, USA. ORCID
  8. Peter Hu: Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, USA. ORCID

Abstract

PURPOSE OF REVIEW: This review investigates the use of machine learning (ML) in prognosticating outcomes for traumatic brain injury (TBI). It underscores the benefits of ML models in processing and integrating complex, multimodal data-including clinical, imaging, and physiological inputs-to identify intricate non-linear relationships that traditional methods might overlook.
RECENT FINDINGS: ML algorithms of clinical features, neuroimaging, and metrics from the autonomic nervous system enhance the early detection of clinical deterioration and improve outcome prediction. Challenges persist, including issues of data variability, model interpretability, and overfitting. However, advancements in model standardization and validation are key to enhancing their clinical applicability. ML-based, multimodal approaches offer transformative potential for personalized treatment planning and patient management. Future directions include integrating digital twins and real-time continuous data analysis, reinforcing the idea that comprehensive data amalgamation is essential for precise, adaptive prognostication and decision-making in neurocritical care, ultimately leading to better patient outcomes.

References

  1. Centers for Disease Control and Prevention. Surveillance report of traumatic brain injury-related deaths by age group, sex, and mechanism of injury—United States, 2018 and 2019. Centers for Disease Control and Prevention, U.S. Department of Health and Human Services. 2022.
  2. Andelic N, Howe EI, Hellstrom T, et al. Disability and quality of life 20 years after traumatic brain injury. Brain Behav. 2018;8(7):e01018. https://doi.org/10.1002/brb3.1018 . [DOI: 10.1002/brb3.1018]
  3. Jourdan C, Azouvi P, Genet F, Selly N, Josseran L, Schnitzler A. Disability and health consequences of traumatic brain injury: national prevalence. Am J Phys Med Rehabil. 2018;97(5):323–31. https://doi.org/10.1097/PHM.0000000000000848 . [DOI: 10.1097/PHM.0000000000000848]
  4. Zaloshnja E, Miller T, Langlois JA, Selassie AW. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J Head Trauma Rehabil. 2008;23(6):394–400. https://doi.org/10.1097/01.HTR.0000341435.52004.ac . [DOI: 10.1097/01.HTR.0000341435.52004.ac]
  5. Muehlschlegel S, Rajajee V, Wartenberg KE, et al. Guidelines for neuroprognostication in critically Ill adults with moderate-severe traumatic brain injury. Neurocrit Care. 2024;40(2):448–76. https://doi.org/10.1007/s12028-023-01902-2 . [DOI: 10.1007/s12028-023-01902-2]
  6. Kim KA, Kim H, Ha EJ, Yoon BC, Kim DJ. Artificial intelligence-enhanced neurocritical care for traumatic brain injury : past, present and future. J Korean Neurosurg Soc. 2024;67(5):493–509. https://doi.org/10.3340/jkns.2023.0195 . [DOI: 10.3340/jkns.2023.0195]
  7. Carra G, Guiza F, Piper I, et al. Development and external validation of a machine learning model for the early prediction of doses of harmful intracranial pressure in patients with severe traumatic brain injury. J Neurotrauma. 2023;40(5–6):514–22. https://doi.org/10.1089/neu.2022.0251 . [DOI: 10.1089/neu.2022.0251]
  8. Chen W, Cockrell CH, Ward K, Najarian K. Predictability of intracranial pressure level in traumatic brain injury: features extraction, statistical analysis and machine learning-based evaluation. Int J Data Min Bioinform. 2013;8(4):480–94. https://doi.org/10.1504/ijdmb.2013.056617 . [DOI: 10.1504/ijdmb.2013.056617]
  9. Petrov D, Miranda SP, Balu R, et al. Prediction of intracranial pressure crises after severe traumatic brain injury using machine learning algorithms. J Neurosurg. 2023;139(2):528–35. https://doi.org/10.3171/2022.12.JNS221860 . [DOI: 10.3171/2022.12.JNS221860]
  10. Ye G, Balasubramanian V, Li JK, Kaya M. Machine learning-based continuous intracranial pressure prediction for traumatic injury patients. IEEE J Transl Eng Health Med. 2022;10:4901008. https://doi.org/10.1109/JTEHM.2022.3179874 . [DOI: 10.1109/JTEHM.2022.3179874]
  11. Zhu J, Shan Y, Li Y, Wu X, Gao G. Predicting the severity and discharge prognosis of traumatic brain injury based on intracranial pressure data using machine learning algorithms. World Neurosurg. 2024;185:e1348–60. https://doi.org/10.1016/j.wneu.2024.03.085 . [DOI: 10.1016/j.wneu.2024.03.085]
  12. Melinosky C, Yang S, Hu P, et al. Continuous vital sign analysis to predict secondary neurological decline after traumatic brain injury. Front Neurol. 2018;9:761. https://doi.org/10.3389/fneur.2018.00761 . [DOI: 10.3389/fneur.2018.00761]
  13. Yang S, Hu P, Kalpakis K, et al. Utilizing ultra-early continuous physiologic data to develop automated measures of clinical severity in a traumatic brain injury population. Sci Rep. 2024;14(1):7618. https://doi.org/10.1038/s41598-024-57538-5 . [DOI: 10.1038/s41598-024-57538-5]
  14. Yue JK, Lee YM, Sun X, et al. Performance of the IMPACT and CRASH prognostic models for traumatic brain injury in a contemporary multicenter cohort: a TRACK-TBI study. J Neurosurg. 2024;141(2):417–29. https://doi.org/10.3171/2023.11.JNS231425 . [DOI: 10.3171/2023.11.JNS231425]
  15. Karabacak M, Jagtiani P, Dams-O’Connor K, Legome E, Hickman ZL, Margetis K. The MOST (Mortality Score for TBI): a novel prediction model beyond CRASH-Basic and IMPACT-Core for isolated traumatic brain injury. Injury. 2024;111956. https://doi.org/10.1016/j.injury.2024.111956 .
  16. Richter S, Czeiter E, Amrein K, et al. Prognostic value of serum biomarkers in patients with moderate-severe traumatic brain injury, differentiated by Marshall computer tomography classification. J Neurotrauma. 2023;40(21–22):2297–310. https://doi.org/10.1089/neu.2023.0029 . [DOI: 10.1089/neu.2023.0029]
  17. Eagle SR, Pease M, Nwachuku E, Deng H, Okonkwo DO. Prognostic models for traumatic brain injury have good discrimination but poor overall model performance for predicting mortality and unfavorable outcomes. Neurosurgery. 2023;92(1):137–43. https://doi.org/10.1227/neu.0000000000002150 . [DOI: 10.1227/neu.0000000000002150]
  18. Eagle SR, Nwachuku E, Elmer J, Deng H, Okonkwo DO, Pease M. Performance of CRASH and IMPACT prognostic models for traumatic brain injury at 12 and 24 months post-injury. Neurotrauma Rep. 2023;4(1):118–23. https://doi.org/10.1089/neur.2022.0082 . [DOI: 10.1089/neur.2022.0082]
  19. Bertotti MM, Martins ET, Areas FZ, et al. Glasgow coma scale pupil score (GCS-P) and the hospital mortality in severe traumatic brain injury: analysis of 1,066 Brazilian patients. Arq Neuropsiquiatr. 2023;81(5):452–459. Escala de coma de Glasgow com resposta pupilar (ECG-P) e mortalidade hospitalar em traumatismo cranioencefalico grave: analise de 1.066 pacientes brasileiros. https://doi.org/10.1055/s-0043-1768671
  20. Eghzawi A, Alsabbah A, Gharaibeh S, Alwan I, Gharaibeh A, Goyal AV. Mortality predictors for adult patients with mild-to-moderate traumatic brain injury: a literature review. Neurol Int. 2024;16(2):406–18. https://doi.org/10.3390/neurolint16020030 . [DOI: 10.3390/neurolint16020030]
  21. Ahmadi S, Sarveazad A, Babahajian A, Ahmadzadeh K, Yousefifard M. Comparison of Glasgow Coma Scale and Full Outline of UnResponsiveness score for prediction of in-hospital mortality in traumatic brain injury patients: a systematic review and meta-analysis. Eur J Trauma Emerg Surg. 2023;49(4):1693–706. https://doi.org/10.1007/s00068-022-02111-w . [DOI: 10.1007/s00068-022-02111-w]
  22. Popal Z, Bossers SM, Terra M, et al. Effect of physician-staffed emergency medical services (P-EMS) on the outcome of patients with severe traumatic brain injury: a review of the literature. Prehosp Emerg Care Sep-Oct. 2019;23(5):730–9. https://doi.org/10.1080/10903127.2019.1575498 . [DOI: 10.1080/10903127.2019.1575498]
  23. McNett M. A review of the predictive ability of Glasgow Coma Scale scores in head-injured patients. J Neurosci Nurs. 2007;39(2):68–75. https://doi.org/10.1097/01376517-200704000-00002 . [DOI: 10.1097/01376517-200704000-00002]
  24. Bodien YG, Barra A, Temkin NR, et al. Diagnosing level of consciousness: the limits of the Glasgow coma scale total score. J Neurotrauma. 2021;38(23):3295–305. https://doi.org/10.1089/neu.2021.0199 . [DOI: 10.1089/neu.2021.0199]
  25. Reith FC, Brennan PM, Maas AI, Teasdale GM. Lack of standardization in the use of the glasgow coma scale: results of international surveys. J Neurotrauma. 2016;33(1):89–94. https://doi.org/10.1089/neu.2014.3843 . [DOI: 10.1089/neu.2014.3843]
  26. Reith FC, Van den Brande R, Synnot A, Gruen R, Maas AI. The reliability of the Glasgow Coma Scale: a systematic review. Intensive Care Med. 2016;42(1):3–15. https://doi.org/10.1007/s00134-015-4124-3 . [DOI: 10.1007/s00134-015-4124-3]
  27. Gill MR, Reiley DG, Green SM. Interrater reliability of Glasgow Coma Scale scores in the emergency department. Ann Emerg Med. 2004;43(2):215–23. https://doi.org/10.1016/s0196-0644(03)00814-x . [DOI: 10.1016/s0196-0644(03)00814-x]
  28. Reith FC, Synnot A, van den Brande R, Gruen RL, Maas AI. Factors influencing the reliability of the glasgow coma scale: a systematic review. Neurosurgery. 2017;80(6):829–39. https://doi.org/10.1093/neuros/nyw178 . [DOI: 10.1093/neuros/nyw178]
  29. Reith FCM, Lingsma HF, Gabbe BJ, Lecky FE, Roberts I, Maas AIR. Differential effects of the Glasgow coma scale score and its components: an analysis of 54,069 patients with traumatic brain injury. Injury. 2017;48(9):1932–43. https://doi.org/10.1016/j.injury.2017.05.038 . [DOI: 10.1016/j.injury.2017.05.038]
  30. Emami P, Czorlich P, Fritzsche FS, et al. Impact of Glasgow Coma Scale score and pupil parameters on mortality rate and outcome in pediatric and adult severe traumatic brain injury: a retrospective, multicenter cohort study. J Neurosurg. 2017;126(3):760–7. https://doi.org/10.3171/2016.1.JNS152385 . [DOI: 10.3171/2016.1.JNS152385]
  31. Hoffmann M, Lefering R, Rueger JM, et al. Pupil evaluation in addition to Glasgow coma scale components in prediction of traumatic brain injury and mortality. Br J Surg. 2012;99(Suppl 1):122–30. https://doi.org/10.1002/bjs.7707 . [DOI: 10.1002/bjs.7707]
  32. Marmarou A, Lu J, Butcher I, et al. Prognostic value of the Glasgow Coma Scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: an IMPACT analysis. J Neurotrauma. 2007;24(2):270–80. https://doi.org/10.1089/neu.2006.0029 . [DOI: 10.1089/neu.2006.0029]
  33. Romagnosi F, Bernini A, Bongiovanni F, et al. Neurological pupil index for the early prediction of outcome in severe acute brain injury patients. Brain Sci. 2022;12(5). https://doi.org/10.3390/brainsci12050609 .
  34. Lussier BL, Olson DM, Aiyagari V. Automated pupillometry in neurocritical care: research and practice. Curr Neurol Neurosci Rep. 2019;19(10):71. https://doi.org/10.1007/s11910-019-0994-z . [DOI: 10.1007/s11910-019-0994-z]
  35. Vrettou CS, Fragkou PC, Mallios I, et al. The role of automated infrared pupillometry in traumatic brain injury: a narrative review. J Clin Med. 2024;13(2). https://doi.org/10.3390/jcm13020614 .
  36. Othman MH, Olsen MH, Hansen KIT, et al. Covert consciousness in acute brain injury revealed by automated pupillometry and cognitive paradigms. Neurocrit Care. 2024;41(1):218–27. https://doi.org/10.1007/s12028-024-01983-7 . [DOI: 10.1007/s12028-024-01983-7]
  37. Nyholm B, Obling L, Hassager C, et al. Superior reproducibility and repeatability in automated quantitative pupillometry compared to standard manual assessment, and quantitative pupillary response parameters present high reliability in critically ill cardiac patients. PLoS ONE. 2022;17(7):e0272303. https://doi.org/10.1371/journal.pone.0272303 . [DOI: 10.1371/journal.pone.0272303]
  38. Luz Teixeira T, Peluso L, Banco P, et al. Early pupillometry assessment in traumatic brain injury patients: a retrospective study. Brain Sci. 2021;11(12). https://doi.org/10.3390/brainsci11121657 .
  39. Marshall LF, Marshall SB, Klauber MR, et al. The diagnosis of head injury requires a classification based on computed axial tomography. J Neurotrauma. 1992;9(Suppl 1):S287–92. [PMID: 1588618]
  40. Maas AI, Hukkelhoven CW, Marshall LF, Steyerberg EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurg. 2005; 57(6):1173–82; discussion 1173–82. https://doi.org/10.1227/01.neu.0000186013.63046.6b
  41. Shenton ME, Hamoda HM, Schneiderman JS, et al. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):137–92. https://doi.org/10.1007/s11682-012-9156-5 . [DOI: 10.1007/s11682-012-9156-5]
  42. Rincon SP, Mukherjee P, Levin HS, et al. Interrater reliability of national institutes of health traumatic brain injury imaging common data elements for brain magnetic resonance imaging in mild traumatic brain injury. J Neurotrauma. 2021;38(20):2831–40. https://doi.org/10.1089/neu.2021.0138 . [DOI: 10.1089/neu.2021.0138]
  43. Haghbayan H, Boutin A, Laflamme M, et al. The prognostic value of MRI in moderate and severe traumatic brain injury: a systematic review and meta-analysis. Crit Care Med. 2017;45(12):e1280–8. https://doi.org/10.1097/CCM.0000000000002731 . [DOI: 10.1097/CCM.0000000000002731]
  44. Collaborators MCT, Perel P, Arango M, et al. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ. 2008;336(7641):425–9. https://doi.org/10.1136/bmj.39461.643438.25 . [DOI: 10.1136/bmj.39461.643438.25]
  45. Steyerberg EW, Mushkudiani N, Perel P, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 2008;5(8):e165; discussion e165. https://doi.org/10.1371/journal.pmed.0050165
  46. Korley FK, Jain S, Sun X, et al. Prognostic value of day-of-injury plasma GFAP and UCH-L1 concentrations for predicting functional recovery after traumatic brain injury in patients from the US TRACK-TBI cohort: an observational cohort study. Lancet Neurol. 2022;21(9):803–13. https://doi.org/10.1016/S1474-4422(22)00256-3 . [DOI: 10.1016/S1474-4422(22)00256-3]
  47. Sleigh JW, Havill JH, Frith R, Kersel D, Marsh N, Ulyatt D. Somatosensory evoked potentials in severe traumatic brain injury: a blinded study. J Neurosurg. 1999;91(4):577–80. https://doi.org/10.3171/jns.1999.91.4.0577 . [DOI: 10.3171/jns.1999.91.4.0577]
  48. Rubinos C, Bruzzone MJ, Viswanathan V, Figueredo L, Maciel CB, LaRoche S. Electroencephalography as a biomarker of prognosis in acute brain injury. Semin Neurol. 2023;43(5):675–88. https://doi.org/10.1055/s-0043-1775816 . [DOI: 10.1055/s-0043-1775816]
  49. Casault C, Couillard P, Kromm J, Rosenthal E, Kramer A, Brindley P. Multimodal brain monitoring following traumatic brain injury: A primer for intensive care practitioners. J Intensive Care Soc. 2022;23(2):191–202. https://doi.org/10.1177/1751143720980273 . [DOI: 10.1177/1751143720980273]
  50. Shen Y, Wen D, Liang Z, et al. Brain tissue oxygen partial pressure monitoring and prognosis of patients with traumatic brain injury: a meta-analysis. Neurosurg Rev. 2024;47(1):222. https://doi.org/10.1007/s10143-024-02439-4 . [DOI: 10.1007/s10143-024-02439-4]
  51. Payen JF, Launey Y, Chabanne R, et al. Intracranial pressure monitoring with and without brain tissue oxygen pressure monitoring for severe traumatic brain injury in France (OXY-TC): an open-label, randomised controlled superiority trial. Lancet Neurol. 2023;22(11):1005–14. https://doi.org/10.1016/S1474-4422(23)00290-9 . [DOI: 10.1016/S1474-4422(23)00290-9]
  52. Bernard F, Barsan W, Diaz-Arrastia R, Merck LH, Yeatts S, Shutter LA. Brain oxygen optimization in severe traumatic brain injury (BOOST-3): a multicentre, randomised, blinded-endpoint, comparative effectiveness study of brain tissue oxygen and intracranial pressure monitoring versus intracranial pressure alone. BMJ Open. 2022;12(3):e060188. https://doi.org/10.1136/bmjopen-2021-060188 . [DOI: 10.1136/bmjopen-2021-060188]
  53. Raj R, Wennervirta JM, Tjerkaski J, et al. Dynamic prediction of mortality after traumatic brain injury using a machine learning algorithm. NPJ Digit Med. 2022;5(1):96. https://doi.org/10.1038/s41746-022-00652-3 . [DOI: 10.1038/s41746-022-00652-3]
  54. Farzaneh N, Williamson CA, Gryak J, Najarian K. A hierarchical expert-guided machine learning framework for clinical decision support systems: an application to traumatic brain injury prognostication. NPJ Digit Med. 2021;4(1):78. https://doi.org/10.1038/s41746-021-00445-0 . [DOI: 10.1038/s41746-021-00445-0]
  55. Moya A, Pretel E, Navarro E, Jaen J. A systematic literature review of clustering techniques for patients with traumatic brain injury. Artif Intell Rev. 2023;56(Suppl 1):351–419. [DOI: 10.1007/s10462-023-10531-2]
  56. Fong N, Feng J, Hubbard A, Dang LE, Pirracchio R. IntraCranial pressure prediction AlgoRithm using machinE learning (I-CARE): Training and validation study. Crit Care Explor. 2024;6(1):e1024. https://doi.org/10.1097/CCE.0000000000001024 . [DOI: 10.1097/CCE.0000000000001024]
  57. Podell J, Pergakis M, Yang S, et al. Leveraging continuous vital sign measurements for real-time assessment of autonomic nervous system dysfunction after brain injury: a narrative review of current and future applications. Neurocrit Care. 2022;37(Suppl 2):206–19. https://doi.org/10.1007/s12028-022-01491-6 . [DOI: 10.1007/s12028-022-01491-6]
  58. Shan B, Wang R, Xu J. Development of predictive model for the neurological deterioration among mild traumatic brain injury patients using machine learning algorithms. Neurosurg Rev. 2024;47(1):500. https://doi.org/10.1007/s10143-024-02718-0 . [DOI: 10.1007/s10143-024-02718-0]
  59. Yang Y, Zhou L, Luo J, et al. Prediction analysis of TBI 24-h survival outcome based on machine learning. Heliyon. 2024;10(9):e30198. https://doi.org/10.1016/j.heliyon.2024.e30198 . [DOI: 10.1016/j.heliyon.2024.e30198]
  60. Amorim RL, Oliveira LM, Malbouisson LM, et al. Prediction of early TBI mortality using a machine learning approach in a LMIC population. Front Neurol. 2019;10:1366. https://doi.org/10.3389/fneur.2019.01366 . [DOI: 10.3389/fneur.2019.01366]
  61. Adil SM, Elahi C, Gramer R, et al. Predicting the individual treatment effect of neurosurgery for patients with traumatic brain injury in the low-resource setting: a machine learning approach in Uganda. J Neurotrauma. 2021;38(7):928–39. https://doi.org/10.1089/neu.2020.7262 . [DOI: 10.1089/neu.2020.7262]
  62. Adil SM, Elahi C, Patel DN, et al. Deep learning to predict traumatic brain injury outcomes in the low-resource setting. World Neurosurg. 2022;164:e8–16. https://doi.org/10.1016/j.wneu.2022.02.097 . [DOI: 10.1016/j.wneu.2022.02.097]
  63. Schweingruber N, Mader MMD, Wiehe A, et al. A recurrent machine learning model predicts intracranial hypertension in neurointensive care patients. Brain. 2022;145(8):2910–9. https://doi.org/10.1093/brain/awab453 . [DOI: 10.1093/brain/awab453]
  64. Nair S, Guo A, Boen J, Aggarwal A, Chahal O, Tandon A, Patel M, Sankararaman S, Durr NJ, Azad TD, Pirracchio R. A deep learning approach for generating intracranial pressure waveforms from extracranial signals routinely measured in the intensive care unit. Comput Biol Med. 2024;177:108677. [DOI: 10.1016/j.compbiomed.2024.108677]
  65. Gulamali F, Jayaraman P, Sawant AS, et al. Derivation, external and clinical validation of a deep learning approach for detecting intracranial hypertension. NPJ Digit Med. 2024;7(1):233. https://doi.org/10.1038/s41746-024-01227-0 . [DOI: 10.1038/s41746-024-01227-0]
  66. Abdul-Rahman A, Morgan W, Vukmirovic A, Yu DY. Probability density and information entropy of machine learning derived intracranial pressure predictions. PLoS ONE. 2024;19(7):e0306028. https://doi.org/10.1371/journal.pone.0306028 . [DOI: 10.1371/journal.pone.0306028]
  67. van Hal ST, van der Jagt M, van Genderen ME, Gommers D, Veenland JF. Using artificial intelligence to predict intracranial hypertension in patients after traumatic brain injury: a systematic review. Neurocrit Care. 2024;41(1):285–96. https://doi.org/10.1007/s12028-023-01910-2 . [DOI: 10.1007/s12028-023-01910-2]
  68. Vakitbilir N, Bergmann T, Froese L, et al. Multivariate modeling and prediction of cerebral physiology in acute traumatic neural injury: a scoping review. Comput Biol Med. 2024;178:108766. https://doi.org/10.1016/j.compbiomed.2024.108766 . [DOI: 10.1016/j.compbiomed.2024.108766]
  69. Galos P, Hult L, Zachariah D, et al. Machine learning based prediction of imminent ICP insults during neurocritical care of traumatic brain injury. Neurocrit Care. 2024. https://doi.org/10.1007/s12028-024-02119-7 . [DOI: 10.1007/s12028-024-02119-7]
  70. Phaphuangwittayakul A, Guo Y, Ying F, Dawod AY, Angkurawaranon S, Angkurawaranon C. An optimal deep learning framework for multi-type hemorrhagic lesions detection and quantification in head CT images for traumatic brain injury. Appl Intell (Dordr). 2022;52(7):7320–38. https://doi.org/10.1007/s10489-021-02782-9 . [DOI: 10.1007/s10489-021-02782-9]
  71. Wang X, Shen T, Yang S, Lan J, Xu Y, Wang M, Zhang J, Han X. A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans. Neuroimage Clin. 2021;32:102785. [DOI: 10.1016/j.nicl.2021.102785]
  72. Yao H, Williamson C, Gryak J, Najarian K. Automated hematoma segmentation and outcome prediction for patients with traumatic brain injury. Artif Intell Med. 2020;107:101910. https://doi.org/10.1016/j.artmed.2020.101910 . [DOI: 10.1016/j.artmed.2020.101910]
  73. He H, Liu J, Li C, et al. Predicting hematoma expansion and prognosis in cerebral contusions: a radiomics-clinical approach. J Neurotrauma. 2024;41(11–12):1337–52. https://doi.org/10.1089/neu.2023.0410 . [DOI: 10.1089/neu.2023.0410]
  74. Hinson HE, Radabaugh HL, Li N, et al. Predicting progression of intracranial hemorrhage in the prehospital TXA for TBI trial. J Neurotrauma. 2024;41(19–20):2349–61. https://doi.org/10.1089/neu.2023.0626 . [DOI: 10.1089/neu.2023.0626]
  75. Lee HS, Kim JH, Son J, Park H, Choi J. Machine learning models for predicting early hemorrhage progression in traumatic brain injury. Sci Rep. 2024;14(1):11690. https://doi.org/10.1038/s41598-024-61739-3 . [DOI: 10.1038/s41598-024-61739-3]
  76. La Rocca M, Garner R, Amoroso N, et al. Multiplex networks to characterize seizure development in traumatic brain injury patients. Front Neurosci. 2020;14:591662. https://doi.org/10.3389/fnins.2020.591662 . [DOI: 10.3389/fnins.2020.591662]
  77. Hellstrom T, Kaufmann T, Andelic N, et al. Predicting outcome 12 months after mild traumatic brain injury in patients admitted to a neurosurgery service. Front Neurol. 2017;8:125. https://doi.org/10.3389/fneur.2017.00125 . [DOI: 10.3389/fneur.2017.00125]
  78. Akerlund CAI, Holst A, Stocchetti N, et al. Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a CENTER-TBI study. Crit Care. 2022;26(1):228. https://doi.org/10.1186/s13054-022-04079-w . [DOI: 10.1186/s13054-022-04079-w]
  79. Wang R, Cai L, Liu Y, Zhang J, Ou X, Xu J. Machine learning algorithms for prediction of ventilator associated pneumonia in traumatic brain injury patients from the MIMIC-III database. Heart Lung. 2023;62:225–32. https://doi.org/10.1016/j.hrtlng.2023.08.002 . [DOI: 10.1016/j.hrtlng.2023.08.002]
  80. Li S, Feng Q, Wang J, et al. A Machine learning model based on CT imaging metrics and clinical features to predict the risk of hospital-acquired pneumonia after traumatic brain injury. Infect Drug Resist. 2024;17:3863–77. https://doi.org/10.2147/IDR.S473825 . [DOI: 10.2147/IDR.S473825]
  81. Abujaber A, Fadlalla A, Gammoh D, Al-Thani H, El-Menyar A. Machine learning model to predict ventilator associated pneumonia in patients with traumatic brain injury: the C.5 decision tree approach. Brain Inj. 2021;35(9):1095–102. https://doi.org/10.1080/02699052.2021.1959060 . [DOI: 10.1080/02699052.2021.1959060]
  82. Wang R, Cai L, Zhang J, He M, Xu J. Prediction of acute respiratory distress syndrome in traumatic brain injury patients based on machine learning algorithms. Medicina (Kaunas). 2023;59(1). https://doi.org/10.3390/medicina59010171 .
  83. Peng C, Yang F, Li L, et al. A Machine learning approach for the prediction of severe acute kidney injury following traumatic brain injury. Neurocrit Care. 2023;38(2):335–44. https://doi.org/10.1007/s12028-022-01606-z . [DOI: 10.1007/s12028-022-01606-z]
  84. Wu X, Sun Y, Xu X, et al. Mortality prediction in severe traumatic brain injury using traditional and machine learning algorithms. J Neurotrauma. 2023;40(13–14):1366–75. https://doi.org/10.1089/neu.2022.0221 . [DOI: 10.1089/neu.2022.0221]
  85. Cao Y, Forssten MP, Sarani B, Montgomery S, Mohseni S. Development and validation of an XGBoost-Algorithm-Powered survival model for predicting in-hospital mortality based on 545,388 isolated severe traumatic brain injury patients from the TQIP database. J Pers Med. 2023;13(9). https://doi.org/10.3390/jpm13091401 .
  86. Hsu SD, Chao E, Chen SJ, Hueng DY, Lan HY, Chiang HH. Machine learning algorithms to predict in-hospital mortality in patients with traumatic brain injury. J Pers Med. 2021;11(11). https://doi.org/10.3390/jpm11111144 .
  87. Raj R, Luostarinen T, Pursiainen E, et al. Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep. 2019;9(1):17672. https://doi.org/10.1038/s41598-019-53889-6 . [DOI: 10.1038/s41598-019-53889-6]
  88. Martin FP, Goronflot T, Moyer JD, et al. Predictive Models of long-term outcome in patients with moderate to severe traumatic brain injury are biased toward mortality prediction. Neurocrit Care. 2024. https://doi.org/10.1007/s12028-024-02082-3 . [DOI: 10.1007/s12028-024-02082-3]
  89. Yao PF, Gandhi PA, McMullen EP, Manka M, Liang J. Applications of machine learning in prognostication of mTBI: a systematic review. Am J Phys Med Rehabil. 2024. https://doi.org/10.1097/PHM.0000000000002551 . [DOI: 10.1097/PHM.0000000000002551]
  90. Rajagopalan S, Baker W, Mahanna-Gabrielli E, Kofke AW, Balu R. Hierarchical cluster analysis identifies distinct physiological states after acute brain injury. Neurocrit Care. 2022;36(2):630–9. https://doi.org/10.1007/s12028-021-01362-6 . [DOI: 10.1007/s12028-021-01362-6]
  91. Amiri M, Fisher PM, Raimondo F, et al. Multimodal prediction of residual consciousness in the intensive care unit: the CONNECT-ME study. Brain. 2023;146(1):50–64. https://doi.org/10.1093/brain/awac335 . [DOI: 10.1093/brain/awac335]
  92. Bhattacharyay S, Caruso PF, Akerlund C, et al. Mining the contribution of intensive care clinical course to outcome after traumatic brain injury. NPJ Digit Med. 2023;6(1):154. https://doi.org/10.1038/s41746-023-00895-8 . [DOI: 10.1038/s41746-023-00895-8]
  93. Zhang K, Zhou HY, Baptista-Hon DT, et al. Concepts and applications of digital twins in healthcare and medicine. Patterns (N Y). 2024;5(8):101028. https://doi.org/10.1016/j.patter.2024.101028 . [DOI: 10.1016/j.patter.2024.101028]
  94. Katsoulakis E, Wang Q, Wu H, et al. Digital twins for health: a scoping review. NPJ Digit Med. 2024;7(1):77. https://doi.org/10.1038/s41746-024-01073-0 . [DOI: 10.1038/s41746-024-01073-0]
  95. Gravesteijn BY, Nieboer D, Ercole A, et al. Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury. J Clin Epidemiol. 2020;122:95–107. https://doi.org/10.1016/j.jclinepi.2020.03.005 . [DOI: 10.1016/j.jclinepi.2020.03.005]
  96. Rockenschaub P, Hilbert A, Kossen T, et al. The impact of multi-institution datasets on the generalizability of machine learning prediction models in the ICU. Crit Care Med. 2024;52(11):1710–21. https://doi.org/10.1097/CCM.0000000000006359 . [DOI: 10.1097/CCM.0000000000006359]
  97. Gurwitz D, Lunshof JE, Altman RB. A call for the creation of personalized medicine databases. Nat Rev Drug Discov. 2006;5(1):23–6. https://doi.org/10.1038/nrd1931 . [DOI: 10.1038/nrd1931]
  98. Johnson AEW, Bulgarelli L, Shen L, et al. Author correction: MIMIC-IV, a freely accessible electronic health record dataset. Sci Data. 2023;10(1):219. https://doi.org/10.1038/s41597-023-02136-9 . [DOI: 10.1038/s41597-023-02136-9]
  99. Roh Y, Heo G, Whang SE. A survey on data collection for machine learning: a big data-ai integration perspective. IEEE Trans Knowl Data Eng. 2019;33(4):1328–47. [DOI: 10.1109/TKDE.2019.2946162]
  100. Systems. 37th conference on neural information processing systems. New Orleans; 2023.
  101. Famá F, Kalalas C, Lagen S, Dini P. Measuring data similarity for efficient federated learning: a feasibility study. Available from: https://arxiv.org/abs/2403.07450 .
  102. Kompa B, Snoek J, Beam AL. Second opinion needed: communicating uncertainty in medical machine learning. NPJ Digit Med. 2021;4(1):4. https://doi.org/10.1038/s41746-020-00367-3 . [DOI: 10.1038/s41746-020-00367-3]
  103. Joshi P, Dhar R. EpICC: a Bayesian neural network model with uncertainty correction for a more accurate classification of cancer. Sci Rep. 2022;12(1):14628. https://doi.org/10.1038/s41598-022-18874-6 . [DOI: 10.1038/s41598-022-18874-6]
  104. Tamori H, Yamashina H, Mukai M, Morii Y, Suzuki T, Ogasawara K. Acceptance of the use of artificial intelligence in medicine among Japan’s doctors and the public: a questionnaire survey. JMIR Hum Factors. 2022;9(1):e24680. https://doi.org/10.2196/24680 . [DOI: 10.2196/24680]
  105. Yang J, Karstens L, Ross C, Yala A. AI gone astray: technical supplement. Available from: https://arxiv.org/abs/2203.16452 .
  106. Vela D, Sharp A, Zhang R, Nguyen T, Hoang A, Pianykh OS. Temporal quality degradation in AI models. Sci Rep. 2022;12(1):11654. https://doi.org/10.1038/s41598-022-15245-z . [DOI: 10.1038/s41598-022-15245-z]
  107. Hawryluk GWJ. Editorial. Prognostication in traumatic brain injury: now what? J Neurosurg. 2024;141(2):412–6. https://doi.org/10.3171/2023.12.JNS232644 . [DOI: 10.3171/2023.12.JNS232644]
  108. Kreuzberger DKN, Hirschl S. Machine learning operations (mlops): overview, definition, and architecture. IEEE access. 2023;11:31866–79. [DOI: 10.1109/ACCESS.2023.3262138]

Grants

  1. MTEC - 20 - 13 - IMAS - 006/U.S. Department of Defense
  2. W81XWH-24-CCCRP1/Congressionally Directed Medical Research Programs
  3. W81XWH-24-CCCRP1/Congressionally Directed Medical Research Programs
  4. W81XWH-24-CCCRP1/Congressionally Directed Medical Research Programs
  5. HR001122S0043RITMO-PA-006/Defense Advanced Research Projects Agency
  6. HR001122S0043RITMO-PA-006/Defense Advanced Research Projects Agency
  7. HR001122S0043RITMO-PA-006/Defense Advanced Research Projects Agency

MeSH Term

Humans
Machine Learning
Brain Injuries, Traumatic
Prognosis
Neuroimaging

Word Cloud

Created with Highcharts 10.0.0clinicalMLdataoutcomesintegratingmultimodalmodelpatientPURPOSEOFREVIEW:reviewinvestigatesusemachinelearningprognosticatingtraumaticbraininjuryTBIunderscoresbenefitsmodelsprocessingcomplexdata-includingimagingphysiologicalinputs-toidentifyintricatenon-linearrelationshipstraditionalmethodsmightoverlookRECENTFINDINGS:algorithmsfeaturesneuroimagingmetricsautonomicnervoussystemenhanceearlydetectiondeteriorationimproveoutcomepredictionChallengespersistincludingissuesvariabilityinterpretabilityoverfittingHoweveradvancementsstandardizationvalidationkeyenhancingapplicabilityML-basedapproachesoffertransformativepotentialpersonalizedtreatmentplanningmanagementFuturedirectionsincludedigitaltwinsreal-timecontinuousanalysisreinforcingideacomprehensiveamalgamationessentialpreciseadaptiveprognosticationdecision-makingneurocriticalcareultimatelyleadingbetterMachineLearningApproachesPrognosticationTraumaticBrainInjury

Similar Articles

Cited By

No available data.