Modulated ringdown comb interferometry for sensing of highly complex gases.

Qizhong Liang, Apoorva Bisht, Andrew Scheck, Peter G Schunemann, Jun Ye
Author Information
  1. Qizhong Liang: JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA. Qizhong.Liang@colorado.edu. ORCID
  2. Apoorva Bisht: JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA. ORCID
  3. Andrew Scheck: JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA. ORCID
  4. Peter G Schunemann: BAE Systems, Nashua, NH, USA.
  5. Jun Ye: JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA. Ye@jila.colorado.edu. ORCID

Abstract

Gas samples relevant to health and the environment typically contain many molecular species that span a huge concentration dynamic range. Mid-infrared frequency comb spectroscopy with high-finesse cavity enhancement has allowed the most sensitive multispecies trace-gas detections so far. However, the robust performance of this technique depends critically on ensuring absorption-path-length enhancement over a broad spectral coverage, which is severely limited by comb-cavity frequency mismatch if strongly absorbing compounds are present. Here we introduce modulated ringdown comb interferometry, a technique that resolves the vulnerability of comb-cavity enhancement to strong intracavity absorption or dispersion. This technique works by measuring ringdown dynamics carried by massively parallel comb lines transmitted through a length-modulated cavity, making use of both the periodicity of the field dynamics and the Doppler frequency shifts introduced from a Michelson interferometer. As a demonstration, we measure highly dispersive exhaled human breath samples and ambient air in the mid-infrared with finesse improved to 23,000 and coverage to 1,010 cm. Such a product of finesse and spectral coverage is orders of magnitude better than all previous demonstrations, enabling us to simultaneously quantify 20 distinct molecular species at above 1-part-per-trillion sensitivity varying in concentrations by seven orders of magnitude. This technique unlocks next-generation sensing performance for complex and dynamic molecular compositions, with scalable improvement to both finesse and spectral coverage.

References

  1. Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008). [PMID: 18542317]
  2. Liang, Q. et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics. Proc. Natl Acad. Sci. 118, e2105063118 (2021). [PMID: 34599098]
  3. Liang, Q. et al. Breath analysis by ultra-sensitive broadband laser spectroscopy detects SARS-CoV-2 infection. J. Breath Res. 17, 036001 (2023). [DOI: 10.1088/1752-7163/acc6e4]
  4. Rieker, G. B. et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 1, 290–298 (2014). [DOI: 10.1364/OPTICA.1.000290]
  5. Herman, D. I. et al. Precise multispecies agricultural gas flux determined using broadband open-path dual-comb spectroscopy. Sci. Adv. 7, eabe9765 (2021). [PMID: 33789900]
  6. Giorgetta, F. R. et al. Open-path dual-comb spectroscopy for multispecies trace gas detection in the 4.5–5 μm spectral region. Laser Photonics Rev. 15, 2000583 (2021). [DOI: 10.1002/lpor.202000583]
  7. Bui, T. Q. et al. Spectral analyses of trans- and cis-DOCO transients via comb spectroscopy. Mol. Phys. 116, 3710–3717 (2018). [DOI: 10.1080/00268976.2018.1484949]
  8. Changala, P. B., Spaun, B., Patterson, D., Doyle, J. M. & Ye, J. Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules. Appl. Phys. B 122, 292 (2016). [DOI: 10.1007/s00340-016-6569-7]
  9. Spaun, B. et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533, 517–520 (2016). [PMID: 27144351]
  10. Foltynowicz, A., Maslowski, P., Fleisher, A. J., Bjork, B. J. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B 110, 163–175 (2013). [DOI: 10.1007/s00340-012-5024-7]
  11. Changala, P. B., Weichman, M. L., Lee, K. F., Fermann, M. E. & Ye, J. Rovibrational quantum state resolution of the C fullerene. Science 363, 49–54 (2019). [PMID: 30606838]
  12. Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016). [PMID: 27789837]
  13. Bui, T. Q. et al. Direct measurements of DOCO isomers in the kinetics of OD + CO. Sci. Adv. 4, eaao4777 (2018). [PMID: 29349298]
  14. Fleisher, A. J. et al. Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J. Phys. Chem. Lett. 5, 2241–2246 (2014). [PMID: 26279541]
  15. Lu, C., Morville, J., Rutkowski, L., Vieira, F. S. & Foltynowicz, A. Cavity-enhanced frequency comb vernier spectroscopy. Photonics 9, 222 (2022). [DOI: 10.3390/photonics9040222]
  16. Sulzer, P. et al. Cavity-enhanced field-resolved spectroscopy. Nat. Photonics 16, 692–697 (2022). [DOI: 10.1038/s41566-022-01057-0]
  17. Khodabakhsh, A. et al. Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4 μm. Opt. Lett. 41, 2541–2544 (2016). [PMID: 27244409]
  18. Sterczewski, L. A. et al. Cavity-enhanced Vernier spectroscopy with a chip-scale mid-infrared frequency comb. ACS Photonics 9, 994–1001 (2022). [DOI: 10.1021/acsphotonics.1c01849]
  19. Haakestad, M. W., Lamour, T. P., Leindecker, N., Marandi, A. & Vodopyanov, K. L. Intracavity trace molecular detection with a broadband mid-IR frequency comb source. J. Opt. Soc. Am. B 30, 631–640 (2013). [DOI: 10.1364/JOSAB.30.000631]
  20. Markus, C. R. et al. Cavity-enhanced dual-comb spectroscopy in the molecular fingerprint region using free-running quantum cascade lasers. J. Opt. Soc. Am. B 41, E56–E64 (2024). [DOI: 10.1364/JOSAB.534286]
  21. Adler, F., Thorpe, M. J., Cossel, K. C. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 3, 175–205 (2010). [DOI: 10.1146/annurev-anchem-060908-155248]
  22. Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006). [PMID: 16543457]
  23. Okeefe, A. & Deacon, D. A. G. Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2551 (1988). [DOI: 10.1063/1.1139895]
  24. Lisak, D. et al. Dual-comb cavity ring-down spectroscopy. Sci. Rep. 12, 2377 (2022). [PMID: 35149716]
  25. Dubroeucq, R. & Rutkowski, L. Optical frequency comb Fourier transform cavity ring-down spectroscopy. Opt. Express 30, 13594–13602 (2022). [PMID: 35472969]
  26. Costello, B. D. et al. A review of the volatiles from the healthy human body. J. Breath Res. 8, 014001 (2014). [DOI: 10.1088/1752-7155/8/1/014001]
  27. Sherwin, E. D. et al. US oil and gas system emissions from nearly one million aerial site measurements. Nature 627, 328–334 (2024). [PMID: 38480966]
  28. Anenberg, S. C. et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 545, 467–471 (2017). [PMID: 28505629]
  29. van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO. Nature 475, 214–216 (2011). [PMID: 21753852]
  30. Deshmukh, C. S. et al. Net greenhouse gas balance of fibre wood plantation on peat in Indonesia. Nature 616, 740–746 (2023). [PMID: 37020018]
  31. Adler, F. et al. Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm. Opt. Lett. 34, 1330–1332 (2009). [PMID: 19412262]
  32. Dweik, R. A. et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FE) for clinical applications. Am. J. Respir. Crit. Care Med. 184, 602–615 (2011). [PMID: 21885636]
  33. Lundberg, J. O. N. et al. High nitric-oxide production in human paranasal sinuses. Nat. Med. 1, 370–373 (1995). [PMID: 7585069]
  34. Andersson, J. A., Uddman, R. & Cardell, L. O. Carbon monoxide is endogenously produced in the human nose and paranasal sinuses. J Allergy Clin. Immunol. 105, 269–273 (2000). [PMID: 10669846]
  35. Mitsui, T., Miyamura, M., Matsunami, A., Kitagawa, K. & Arai, N. Measuring nitrous oxide in exhaled air by gas chromatography and infrared photoacoustic spectrometry. Clin. Chem. 43, 1993–1995 (1997). [PMID: 9342028]
  36. Costello, B. P. J. D., Ledochowski, M. & Ratcliffe, N. M. The importance of methane breath testing: a review. J. Breath Res. 7, 024001 (2013). [DOI: 10.1088/1752-7155/7/2/024001]
  37. Wang, T. S., Pysanenko, A., Dryahina, K., Spanel, P. & Smith, D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J. Breath Res. 2, 037013 (2008). [PMID: 21386174]
  38. Smith, D. & Spanel, P. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites. J. Breath Res. 9, 022001 (2015). [PMID: 25830501]
  39. Nielsen, G. D. & Wolkoff, P. Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch. Toxicol. 84, 423–446 (2010). [PMID: 20467865]
  40. Winkowski, M. & Stacewicz, T. Optical detection of formaldehyde in air in the 3.6 μm range. Biomed. Opt. Express 11, 7019–7031 (2020). [PMID: 33408977]
  41. Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4, 55–57 (2010). [DOI: 10.1038/nphoton.2009.217]
  42. Foltynowicz, A., Ban, T., Maslowski, P., Adler, F. & Ye, J. Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett. 107, 233002 (2011). [PMID: 22182084]
  43. Xia, Q. et al. Single virus fingerprinting by widefield interferometric defocus-enhanced mid-infrared photothermal microscopy. Nat. Commun. 14, 6655 (2023). [PMID: 37863905]
  44. López-Lorente, A. I. & Mizaikoff, B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal. Bioanal. Chem. 408, 2875–2889 (2016). [PMID: 26879650]
  45. Spanel, P. & Smith, D. Quantification of trace levels of the potential cancer biomarkers formaldehyde, acetaldehyde and propanol in breath by SIFT-MS. J. Breath Res. 2, 046003 (2008). [PMID: 21386190]
  46. Truong, G.-W. et al. Mid-infrared supermirrors with finesse exceeding 400 000. Nat. Commun. 14, 7846 (2023). [PMID: 38057298]
  47. Suh, M. G., Yang, Q. F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016). [PMID: 27738017]
  48. Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics 12, 209–214 (2018). [DOI: 10.1038/s41566-018-0135-2]
  49. Tian, L. et al. Gas phase multicomponent detection and analysis combining broadband dual-frequency comb absorption spectroscopy and deep learning. Commun. Eng. 2, 54 (2023). [>PMCID: ]
  50. Zhu, F. et al. Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett. 12, 095701 (2015). [DOI: 10.1088/1612-2011/12/9/095701]
  51. Johnson, T. A. & Diddams, S. A. Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser. Appl. Phys. B 107, 31–39 (2012). [DOI: 10.1007/s00340-011-4748-0]
  52. Hjältén, A., Foltynowic, A. & Sadiek, I. Line positions and intensities of the ν1 band of CHI using mid-infrared optical frequency comb Fourier transform spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 306, 108646 (2023). [DOI: 10.1016/j.jqsrt.2023.108646]
  53. Zuo, Z. et al. Broadband mid-infrared molecular spectroscopy based on passive coherent optical-optical modulated frequency combs. Photonics Res. 9, 1358–1368 (2021). [DOI: 10.1364/PRJ.422397]
  54. Tomaszewska-Rolla, D. et al. Mid-infrared optical frequency comb spectroscopy using an all-silica antiresonant hollow-core fiber. Opt. Express 32, 10679–10689 (2024). [PMID: 38571273]
  55. Adler, F. et al. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 18, 21861–21872 (2010). [PMID: 20941086]
  56. Sterczewski, L. A. et al. Mid-infrared dual-comb spectroscopy with interband cascade lasers. Opt. Lett. 44, 2113–2116 (2019). [PMID: 30985824]
  57. Komagata, K. N., Wittwer, V. J., Südmeyer, T., Emmenegger, L. & Gianella, M. Absolute frequency referencing for swept dual-comb spectroscopy with midinfrared quantum cascade lasers. Phys. Rev. Res. 5, 013047 (2023). [DOI: 10.1103/PhysRevResearch.5.013047]
  58. Hjältén, A. et al. Optical frequency comb Fourier transform spectroscopy of NO at 7.8 µm. J. Quant. Spectrosc. Radiat. Transf. 271, 107734 (2021). [DOI: 10.1016/j.jqsrt.2021.107734]
  59. Germann, M. et al. A methane line list with sub-MHz accuracy in the 1250 to 1380 cm range from optical frequency comb Fourier transform spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 288, 108252 (2022). [DOI: 10.1016/j.jqsrt.2022.108252]
  60. Dawson, B. et al. Measurements of methane and nitrous oxide in human breath and the development of UK scale emissions. PLoS One 18, e0295157 (2023). [PMID: 38091323]
  61. Wang, Z. N. & Wang, C. J. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J. Breath Res. 7, 037109 (2013). [PMID: 23959840]
  62. Turner, C., Spanel, P. & Smith, D. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 27, 637–648 (2006). [PMID: 16705261]
  63. Dryahina, K., Smith, D. & Spanel, P. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 24, 1296–1304 (2010). [PMID: 20391601]
  64. Paredi, P., Kharitonov, S. A. & Barnes, P. J. Elevation of exhaled ethane concentration in asthma. Am. J. Respir. Crit. Care Med. 162, 1450–1454 (2000). [PMID: 11029360]
  65. Cunnington, A. J. & Hormbrey, P. Breath analysis to detect recent exposure to carbon monoxide. Postgrad. Med. J. 78, 233–237 (2002). [PMID: 11930027]
  66. Poirson, J., Bretenaker, F., Vallet, M. & LeFloch, A. Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses. J. Opt. Soc. Am. B 14, 2811–2817 (1997). [DOI: 10.1364/JOSAB.14.002811]
  67. Wysocki, G. & Weidmann, D. Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser. Opt. Express 18, 26123–26140 (2010). [PMID: 21164961]
  68. Schunemann, P. G., Zawilski, K. T., Pomeranz, L. A., Creeden, D. J. & Budni, P. A. Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B 33, D36–D43 (2016). [DOI: 10.1364/JOSAB.33.000D36]
  69. Iwakuni, K. et al. Phase-stabilized 100 mW frequency comb near 10 μm. Appl. Phys. B 124, 128 (2018). [PMID: 30996528]
  70. Vasilyev, S. et al. Longwave infrared (6.6–11.4 μm) dual-comb spectroscopy with 240,000 comb-mode-resolved data points at video rate. Opt. Lett. 48, 2273–2276 (2023). [PMID: 37126252]
  71. Smolski, V. et al. Half-Watt average power femtosecond source spanning 3–8 μm based on subharmonic generation in GaAs. Appl. Phys. B 124, 101 (2018). [DOI: 10.1007/s00340-018-6963-4]
  72. Heckl, O. H. et al. Three-photon absorption in optical parametric oscillators based on OP-GaAs. Opt. Lett. 41, 5405–5408 (2016). [PMID: 27842144]
  73. Leindecker, N. et al. Octave-spanning ultrafast OPO with 2.6-6.1μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express 20, 7046–7053 (2012). [PMID: 22453385]
  74. Vodopyanov, K. L., Sorokin, E., Sorokina, I. T. & Schunemann, P. G. Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator. Opt. Lett. 36, 2275–2277 (2011). [PMID: 21685991]
  75. Newbury, N. R., Coddington, I. & Swann, W. Sensitivity of coherent dual-comb spectroscopy. Opt. Express 18, 7929–7945 (2010). [PMID: 20588636]
  76. Harris, P. A. et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009). [PMID: 18929686]
  77. Harris, P. A. et al. The REDCap consortium: building an international community of software platform partners. J. Biomed. Inform. 95, 103208 (2019). [PMID: 31078660]
  78. Gordon, I. E. et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949 (2022). [DOI: 10.1016/j.jqsrt.2021.107949]
  79. Drabinska, N. et al. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J. Breath Res. 15, 034001 (2021). [DOI: 10.1088/1752-7163/abf1d0]
  80. Liang, Q., Bisht, A., Scheck, A., Schunemann, P. G. & Ye. J. Data for modulated ringdown comb interferometry for sensing of highly complex gases. Zenodo https://doi.org/10.5281/zenodo.14254339 (2025).

MeSH Term

Interferometry
Humans
Gases
Breath Tests
Exhalation
Spectrophotometry, Infrared
Air

Chemicals

Gases

Word Cloud

Created with Highcharts 10.0.0combtechniquecoveragemolecularfrequencyenhancementspectralringdownfinessesamplesspeciesdynamiccavityperformancecomb-cavityinterferometrydynamicshighlyordersmagnitudesensingcomplexGasrelevanthealthenvironmenttypicallycontainmanyspanhugeconcentrationrangeMid-infraredspectroscopyhigh-finesseallowedsensitivemultispeciestrace-gasdetectionsfarHoweverrobustdependscriticallyensuringabsorption-path-lengthbroadseverelylimitedmismatchstronglyabsorbingcompoundspresentintroducemodulatedresolvesvulnerabilitystrongintracavityabsorptiondispersionworksmeasuringcarriedmassivelyparallellinestransmittedlength-modulatedmakinguseperiodicityfieldDopplershiftsintroducedMichelsoninterferometerdemonstrationmeasuredispersiveexhaledhumanbreathambientairmid-infraredimproved230001010 cmproductbetterpreviousdemonstrationsenablingussimultaneouslyquantify20distinct1-part-per-trillionsensitivityvaryingconcentrationssevenunlocksnext-generationcompositionsscalableimprovementModulatedgases

Similar Articles

Cited By