Preclinical research models for endometrial cancer: development and selection of animal models.

Yang Xue, Wei Shi, Bing Lun, Meilin Kan, Mengling Jia, Yuelin Wu, Li Yang
Author Information
  1. Yang Xue: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
  2. Wei Shi: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
  3. Bing Lun: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
  4. Meilin Kan: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
  5. Mengling Jia: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
  6. Yuelin Wu: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
  7. Li Yang: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

Abstract

endometrial cancer (EC) is the most common gynecological malignancy in developed countries, with rising incidence in recent years. Experimental animal models are crucial for studying the pathogenesis, advancing diagnostic methods, and developing new treatments. We review five main EC animal models. The use of spontaneous and chemically-induced models has decreased, with transgenic mouse and xenograft models becoming the most widely used. These models better simulate tumor molecular mechanisms and treatments, with the organoid-based patient-derived xenograft model (O-PDX) showing great promise in drug screening and personalized therapy. The application of humanized models remains limited due to technical challenges and high costs. In this review, we highlight the strengths and limitations of each model to guide researchers in their selection.

Keywords

References

  1. Prostate. 2022 May;82(6):695-705 [PMID: 35167141]
  2. Retrovirology. 2009 Aug 12;6:76 [PMID: 19674458]
  3. Front Genet. 2021 Dec 09;12:798628 [PMID: 34956336]
  4. Annu Rev Pathol. 2019 Jan 24;14:339-367 [PMID: 30332563]
  5. CA Cancer J Clin. 2021 Jan;71(1):7-33 [PMID: 33433946]
  6. Adv Sci (Weinh). 2023 Aug;10(24):e2300383 [PMID: 37340596]
  7. Toxicology. 1988 Oct;51(2-3):201-12 [PMID: 3176028]
  8. Front Immunol. 2023 Mar 10;14:1095388 [PMID: 36969176]
  9. Int J Cancer. 1992 Dec 2;52(6):941-9 [PMID: 1459735]
  10. J Vis Exp. 2019 Sep 12;(151): [PMID: 31566617]
  11. Int J Mol Sci. 2018 Aug 28;19(9): [PMID: 30154339]
  12. Gynecol Oncol. 2019 Jul;154(1):189-198 [PMID: 31101504]
  13. Adv Exp Med Biol. 2017;943:243-259 [PMID: 27910070]
  14. J Gynecol Oncol. 2023 Mar;34(2):e37 [PMID: 36659832]
  15. Clin Exp Metastasis. 2012 Mar;29(3):217-27 [PMID: 22198674]
  16. Exp Anim. 2023 Aug 7;72(3):402-412 [PMID: 37019665]
  17. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8677-82 [PMID: 19439667]
  18. Int J Cancer. 2006 Oct 15;119(8):1843-9 [PMID: 16804899]
  19. J Cancer Res Clin Oncol. 1993;119(8):450-6 [PMID: 8509435]
  20. Cancers (Basel). 2024 Mar 01;16(5): [PMID: 38473385]
  21. Endocrinology. 2006 Jun;147(6 Suppl):S11-7 [PMID: 16690809]
  22. Int J Gynecol Cancer. 2023 Mar 6;33(3):351-357 [PMID: 36878570]
  23. Int J Gynecol Cancer. 2023 Jan 3;33(1):109-117 [PMID: 36600534]
  24. Acta Anat (Basel). 1987;130(4):351-8 [PMID: 3434191]
  25. Cancer Lett. 2012 Nov 1;324(1):13-30 [PMID: 22561558]
  26. Cancer Lett. 2002 Dec 15;188(1-2):39-46 [PMID: 12406546]
  27. J Natl Compr Canc Netw. 2012 Nov 1;10(11):1339-49 [PMID: 23138163]
  28. J Reprod Dev. 2009 Apr;55(2):105-9 [PMID: 19106489]
  29. Endocr Relat Cancer. 2003 Mar;10(1):23-42 [PMID: 12653669]
  30. Int J Mol Sci. 2018 Aug 17;19(8): [PMID: 30126113]
  31. Am J Cancer Res. 2019 Oct 01;9(10):2170-2193 [PMID: 31720081]
  32. Front Oncol. 2022 Jun 17;12:880643 [PMID: 35785170]
  33. Int J Mol Sci. 2024 May 28;25(11): [PMID: 38892080]
  34. Arch Immunol Ther Exp (Warsz). 2018 Aug;66(4):245-266 [PMID: 29411049]
  35. Sci Rep. 2021 Apr 23;11(1):8847 [PMID: 33893331]
  36. Mol Cancer Res. 2019 Dec;17(12):2369-2382 [PMID: 31597742]
  37. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  38. Appl Microbiol Biotechnol. 2024 Oct 18;108(1):491 [PMID: 39422780]
  39. Gynecol Oncol. 2021 Jun;161(3):720-726 [PMID: 33894982]
  40. Trends Immunol. 2018 Sep;39(9):748-763 [PMID: 30077656]
  41. Mol Nutr Food Res. 2006 Apr;50(4-5):368-72 [PMID: 16534752]
  42. J Natl Cancer Inst. 1987 Jun;78(6):1245-51 [PMID: 3473261]
  43. Gynecol Oncol. 2024 Jun;185:121-127 [PMID: 38402734]
  44. Carcinogenesis. 2004 Nov;25(11):2257-64 [PMID: 15240508]
  45. Toxicol Pathol. 1994 May-Jun;22(3):261-9 [PMID: 7817117]
  46. Jpn J Cancer Res. 1994 Aug;85(8):789-93 [PMID: 7928623]
  47. Mol Cancer. 2022 Feb 21;21(1):57 [PMID: 35189910]
  48. Toxicol Lett. 2017 Apr 15;272:68-74 [PMID: 28300664]
  49. Commun Med (Lond). 2021 Jul 30;1:20 [PMID: 35602206]
  50. Carcinogenesis. 2001 Apr;22(4):587-91 [PMID: 11285193]
  51. Cancer Gene Ther. 2021 Feb;28(1-2):112-125 [PMID: 32632269]
  52. Cell Physiol Biochem. 2017;44(6):2357-2367 [PMID: 29262396]
  53. J Toxicol Pathol. 2012 Dec;25(4):241-7 [PMID: 23345926]
  54. Rev Endocr Metab Disord. 2015 Dec;16(4):359-64 [PMID: 26831296]
  55. Annu Rev Pathol. 2007;2:57-85 [PMID: 18039093]
  56. Reprod Toxicol. 2015 Dec;58:229-33 [PMID: 26546977]
  57. J Appl Toxicol. 2016 Jun;36(6):769-76 [PMID: 26178146]
  58. Gynecol Oncol. 2023 Dec;179:180-187 [PMID: 37992549]
  59. Jpn J Cancer Res. 2002 Jun;93(6):626-35 [PMID: 12079510]
  60. Exp Biol Med (Maywood). 2002 Oct;227(9):709-23 [PMID: 12324652]
  61. Exp Toxicol Pathol. 2015 Oct;67(10):539-50 [PMID: 26382975]
  62. Cancers (Basel). 2021 Mar 23;13(6): [PMID: 33806979]
  63. Hum Cell. 2024 May;37(3):840-853 [PMID: 38546950]
  64. Int J Mol Sci. 2022 Jun 03;23(11): [PMID: 35682944]
  65. Cancer. 2014 Nov 15;120(22):3457-68 [PMID: 25042259]
  66. Toxicol Pathol. 2015 Jun;43(4):464-73 [PMID: 25476797]
  67. Dis Model Mech. 2010 Mar-Apr;3(3-4):181-93 [PMID: 20142330]
  68. Science. 2019 Jun 07;364(6444):952-955 [PMID: 31171691]
  69. Differentiation. 2016 Oct - Nov;92(4):204-215 [PMID: 27262401]
  70. J Pathol. 2014 Oct;234(2):239-52 [PMID: 24930886]
  71. J Exp Clin Cancer Res. 2023 Sep 5;42(1):230 [PMID: 37667311]
  72. J Steroid Biochem Mol Biol. 1996 Apr;58(1):103-15 [PMID: 8809192]
  73. PLoS One. 2014 Jul 31;9(7):e102409 [PMID: 25078979]
  74. Nature. 2013 May 2;497(7447):67-73 [PMID: 23636398]
  75. PLoS One. 2015 Aug 07;10(8):e0135220 [PMID: 26252891]
  76. J Clin Oncol. 2023 Sep 20;41(27):4369-4380 [PMID: 37487144]
  77. Endocrinology. 2018 Apr 1;159(4):1897-1909 [PMID: 29546371]
  78. J Transl Med. 2022 May 10;20(1):206 [PMID: 35538576]
  79. Med Hypotheses. 2016 Jul;92:84-7 [PMID: 27241264]

Word Cloud

Created with Highcharts 10.0.0modelsmodelanimalxenograftcancerECtreatmentsreviewpatient-derivedhumanizedselectionresearchendometrialEndometrialcommongynecologicalmalignancydevelopedcountriesrisingincidencerecentyearsExperimentalcrucialstudyingpathogenesisadvancingdiagnosticmethodsdevelopingnewfivemainusespontaneouschemically-induceddecreasedtransgenicmousebecomingwidelyusedbettersimulatetumormolecularmechanismsorganoid-basedO-PDXshowinggreatpromisedrugscreeningpersonalizedtherapyapplicationremainslimitedduetechnicalchallengeshighcostshighlightstrengthslimitationsguideresearchersPreclinicalcancer:developmentorganoidpreclinical

Similar Articles

Cited By

No available data.