Zika virus inhibits cell death by inhibiting the expression of NLRP3 and A20.

Jian Li, Changyang Zhu, Yang Meng, Linliang Zhang, Cong Liu, Yali Qin, Mingzhou Chen
Author Information
  1. Jian Li: State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China. ORCID
  2. Changyang Zhu: State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
  3. Yang Meng: State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
  4. Linliang Zhang: College of Life Sciences, Hubei University, Wuhan, China.
  5. Cong Liu: State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
  6. Yali Qin: College of Life Sciences, Hubei University, Wuhan, China. ORCID
  7. Mingzhou Chen: State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China. ORCID

Abstract

Zika virus (ZIKV) is associated with microcephaly in neonates and neurological disorders in adults. Chronic ZIKV infection has been identified in the testes, indicating that the virus can lead to prolonged illness, yet its pathogenesis remains poorly understood. Here, we found that ZIKV infection does not induce significant cell death in mouse macrophages despite the critical role that cell death plays in the antiviral immune response. Furthermore, we discovered that ZIKV infection impairs the activation of the NLPR3-dependent inflammasome and inhibits apoptosis. Consequently, we investigated the regulatory mechanism of the NLRP3 inflammasome and apoptosis in the context of ZIKV infection. Our results revealed significant reductions in the protein expression levels of NLRP3 and A20, attributable to post-transcriptional or translational effects during ZIKV infection. These findings suggest that ZIKV infection may disrupt cell death pathways, leading to its pathogenicity.IMPORTANCEZika virus (ZIKV), first isolated from a nonhuman primate in Africa in 1947, was relatively understudied until 2016. By then, ZIKV had already been reported in more than 20 countries and territories. The infection poses a significant risk, as it is associated with microcephaly in infants and neurological disorders in adults; however, the underlying mechanisms responsible for these severe outcomes remain unclear. In this study, we demonstrate that ZIKV infection significantly reduces the expression of NLRP3 and A20 proteins through post-transcriptional or translational processes, which leads to inhibited cell death. These findings are critical because cell death plays a vital role in the host's antiviral immune response. Our findings highlight how ZIKV infection compromises essential cell death pathways, raising serious concerns about its pathogenesis. A comprehensive understanding of this disruption is vital for developing targeted interventions to mitigate the virus' impact on public health.

Keywords

References

  1. J Virol. 2024 Sep 17;98(9):e0079624 [PMID: 39115433]
  2. Nature. 2018 Dec;564(7734):71-76 [PMID: 30487600]
  3. Eur J Immunol. 2023 Nov;53(11):e2250235 [PMID: 36782083]
  4. PLoS Pathog. 2024 Jun 27;20(6):e1012355 [PMID: 38935808]
  5. Cell. 2020 Apr 30;181(3):674-687.e13 [PMID: 32298652]
  6. J Virol. 2022 Jul 27;96(14):e0212721 [PMID: 35758658]
  7. Science. 2019 Apr 5;364(6435): [PMID: 30872533]
  8. Cell. 2024 Jan 18;187(2):235-256 [PMID: 38242081]
  9. Gene. 2017 Sep 10;628:117-128 [PMID: 28720531]
  10. Vaccines (Basel). 2020 Feb 24;8(1): [PMID: 32102364]
  11. J Virol. 2023 Jun 29;97(6):e0055623 [PMID: 37191498]
  12. Emerg Microbes Infect. 2024 Dec;13(1):2300466 [PMID: 38164719]
  13. Trends Cell Biol. 2024 May;34(5):360-362 [PMID: 38461099]
  14. Mol Cell. 2023 Jan 19;83(2):281-297.e10 [PMID: 36586411]
  15. Sci China Life Sci. 2021 May;64(5):709-719 [PMID: 33068285]
  16. N Engl J Med. 2016 Mar 10;374(10):951-8 [PMID: 26862926]
  17. Trans R Soc Trop Med Hyg. 1952 Sep;46(5):509-20 [PMID: 12995440]
  18. J Virol. 2011 May;85(9):4167-72 [PMID: 21289120]
  19. J Virol. 2019 Oct 15;93(21): [PMID: 31413130]
  20. Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2403235121 [PMID: 39145933]
  21. Viruses. 2017 Jan 19;9(1): [PMID: 28106839]
  22. Nat Commun. 2018 Jan 9;9(1):106 [PMID: 29317641]
  23. Nature. 2021 Sep;597(7876):415-419 [PMID: 34471287]
  24. Antiviral Res. 2017 Jul;143:218-229 [PMID: 28461069]
  25. Microbes Infect. 2011 Mar;13(3):209-15 [PMID: 21111841]
  26. Cell. 2018 May 3;173(4):920-933.e13 [PMID: 29576451]
  27. J Virol. 2016 Apr 29;90(10):4864-4875 [PMID: 26962217]
  28. J Infect Dis. 2018 May 25;217(12):1942-1951 [PMID: 29518228]
  29. Curr Top Microbiol Immunol. 2023;442:105-131 [PMID: 33507400]
  30. J Vis Exp. 2014 Nov 04;(93):e52065 [PMID: 25407402]
  31. PLoS One. 2024 Mar 21;19(3):e0290209 [PMID: 38512822]
  32. Cell. 2024 Jul 25;187(15):4061-4077.e17 [PMID: 38878777]
  33. Nature. 2022 Sep;609(7928):785-792 [PMID: 35922005]
  34. J Infect Dis. 2017 Sep 15;216(6):703-712 [PMID: 28934431]
  35. Nat Commun. 2023 Oct 26;14(1):6832 [PMID: 37884553]
  36. Nat Struct Mol Biol. 2018 Jan;25(1):13-20 [PMID: 29323278]
  37. Nat Microbiol. 2022 Jul;7(7):1041-1053 [PMID: 35637330]
  38. Trends Biochem Sci. 2016 Dec;41(12):1012-1021 [PMID: 27669650]
  39. Stem Cell Reports. 2017 Mar 14;8(3):715-727 [PMID: 28216147]
  40. N Engl J Med. 2018 Mar 15;378(11):985-994 [PMID: 29539287]
  41. Cells. 2019 Nov 26;8(12): [PMID: 31779251]
  42. J Virol. 2022 Nov 23;96(22):e0095422 [PMID: 36326277]
  43. J Innate Immun. 2023;15(1):428-441 [PMID: 36944318]
  44. Immune Netw. 2019 Dec 23;19(6):e40 [PMID: 31921470]
  45. Vaccines (Basel). 2024 Aug 01;12(8): [PMID: 39203991]
  46. J Virol. 2016 May 27;90(12):5797-5807 [PMID: 27076639]
  47. Trends Immunol. 2020 May;41(5):421-435 [PMID: 32241683]
  48. Immunity. 2024 Apr 9;57(4):674-699 [PMID: 38599165]
  49. N Engl J Med. 2016 Jun 2;374(22):2142-51 [PMID: 27028667]
  50. Cell Rep. 2024 Jul 23;43(7):114478 [PMID: 38985668]
  51. Cell. 2021 Dec 22;184(26):6299-6312.e22 [PMID: 34861190]
  52. Cell. 2015 Jan 15;160(1-2):62-73 [PMID: 25594175]
  53. Nat Immunol. 2023 Jan;24(1):30-41 [PMID: 36443515]
  54. Nat Immunol. 2008 Mar;9(3):263-71 [PMID: 18223652]
  55. J Gen Virol. 2021 Mar;102(3): [PMID: 31859616]
  56. Cold Spring Harb Perspect Biol. 2012 Mar 01;4(3): [PMID: 22296764]
  57. Nat Microbiol. 2017 Nov;2(11):1558-1570 [PMID: 28827581]
  58. J Virol. 2022 May 25;96(10):e0030922 [PMID: 35502911]
  59. Nature. 2016 May 11;534(7606):267-71 [PMID: 27279226]
  60. Cell Discov. 2017 Mar 21;3:17006 [PMID: 28373913]
  61. Neuron. 2022 Aug 3;110(15):2422-2437.e9 [PMID: 35654037]
  62. Immunol Rev. 2020 Sep;297(1):26-38 [PMID: 32729116]
  63. Chem Biol Interact. 2021 Oct 01;348:109623 [PMID: 34416243]
  64. J Virol. 2022 Jul 13;96(13):e0016722 [PMID: 35695505]
  65. Annu Rev Immunol. 2023 Apr 26;41:301-316 [PMID: 36750315]
  66. PLoS Pathog. 2023 Nov 27;19(11):e1011795 [PMID: 38011215]
  67. Science. 2021 Mar 19;371(6535): [PMID: 33542150]
  68. Traffic. 2007 Jul;8(7):795-807 [PMID: 17537211]
  69. Nat Rev Immunol. 2011 Dec 23;12(2):79-88 [PMID: 22193709]
  70. PLoS Pathog. 2024 Aug 15;20(8):e1012409 [PMID: 39146232]
  71. Cell Rep. 2017 Oct 10;21(2):517-532 [PMID: 29020636]
  72. Leukemia. 2016 Mar;30(3):716-27 [PMID: 26437781]

Grants

  1. 2023YFC2307800/MOST | National Key Research and Development Program of China (NKPs)
  2. 82130064/MOST | National Natural Science Foundation of China (NSFC)
  3. 32470177,U22A20337/MOST | National Natural Science Foundation of China (NSFC)
  4. 2023BCB087/Key R&D Program Project of Hubei Province
  5. JXBS017/Key R&D of Biosafety in Hubei Jiangxia Laboratory
  6. 2024040701010047/Natural Science Foundation of Wuhan

MeSH Term

NLR Family, Pyrin Domain-Containing 3 Protein
Zika Virus
Animals
Mice
Zika Virus Infection
Inflammasomes
Tumor Necrosis Factor alpha-Induced Protein 3
Macrophages
Apoptosis
Humans
Mice, Inbred C57BL
Cell Death

Chemicals

NLR Family, Pyrin Domain-Containing 3 Protein
Inflammasomes
Nlrp3 protein, mouse
Tumor Necrosis Factor alpha-Induced Protein 3
Tnfaip3 protein, mouse

Word Cloud

Created with Highcharts 10.0.0ZIKVinfectioncelldeathNLRP3virusA20significantexpressionfindingsZikaassociatedmicrocephalyneurologicaldisordersadultspathogenesiscriticalroleplaysantiviralimmuneresponseinflammasomeinhibitsapoptosispost-transcriptionaltranslationalpathwaysvitalneonatesChronicidentifiedtestesindicatingcanleadprolongedillnessyetremainspoorlyunderstoodfoundinducemousemacrophagesdespiteFurthermorediscoveredimpairsactivationNLPR3-dependentConsequentlyinvestigatedregulatorymechanismcontextresultsrevealedreductionsproteinlevelsattributableeffectssuggestmaydisruptleadingpathogenicityIMPORTANCEZikafirstisolatednonhumanprimateAfrica1947relativelyunderstudied2016alreadyreported20countriesterritoriesposesriskinfantshoweverunderlyingmechanismsresponsiblesevereoutcomesremainunclearstudydemonstratesignificantlyreducesproteinsprocessesleadsinhibitedhost'shighlightcompromisesessentialraisingseriousconcernscomprehensiveunderstandingdisruptiondevelopingtargetedinterventionsmitigatevirus'impactpublichealthinhibiting

Similar Articles

Cited By