Discovery and inference of a causal network with hidden confounding.

Li Chen, Chunlin Li, Xiaotong Shen, Wei Pan
Author Information
  1. Li Chen: School of Statistics, University of Minnesota, Minneapolis, MN 55455.
  2. Chunlin Li: Department of Statistics, Iowa State University, Ames, IA 50011.
  3. Xiaotong Shen: School of Statistics, University of Minnesota, Minneapolis, MN 55455.
  4. Wei Pan: Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455.

Abstract

This article proposes a novel causal discovery and inference method called GrIVET for a Gaussian directed acyclic graph with unmeasured confounders. GrIVET consists of an order-based causal discovery method and a likelihood-based inferential procedure. For causal discovery, we generalize the existing peeling algorithm to estimate the ancestral relations and candidate instruments in the presence of hidden confounders. Based on this, we propose a new procedure for instrumental variable estimation of each direct effect by separating it from any mediation effects. For inference, we develop a new likelihood ratio test of multiple causal effects that is able to account for the unmeasured confounders. Theoretically, we prove that the proposed method has desirable guarantees, including robustness to invalid instruments and uncertain interventions, estimation consistency, low-order polynomial time complexity, and validity of asymptotic inference. Numerically, GrIVET performs well and compares favorably against state-of-the-art competitors. Furthermore, we demonstrate the utility and effectiveness of the proposed method through an application inferring regulatory pathways from Alzheimer's disease gene expression data.

Keywords

References

  1. Stat. 2022 Dec;11(1): [PMID: 35450402]
  2. Biometrika. 2010 Sep;97(3):519-538 [PMID: 22434937]
  3. Science. 2005 Apr 22;308(5721):523-9 [PMID: 15845847]
  4. PLoS Genet. 2020 Nov 2;16(11):e1009105 [PMID: 33137120]
  5. Stat Med. 2023 Oct 30;42(24):4418-4439 [PMID: 37553084]
  6. J Psychiatry Neurosci. 1996 Mar;21(2):128-34 [PMID: 8820179]
  7. J Mach Learn Res. 2023 Jan-Dec;24: [PMID: 37701522]
  8. Front Genet. 2019 Jun 04;10:524 [PMID: 31214249]
  9. Brain Res. 2001 Apr 20;898(2):350-7 [PMID: 11306022]
  10. J Am Stat Assoc. 2024;119(547):1833-1846 [PMID: 39416711]
  11. J Am Stat Assoc. 2022;117(540):2014-2027 [PMID: 36945327]
  12. Biometrika. 2019 Mar;106(1):109-125 [PMID: 30799877]
  13. Cold Spring Harb Perspect Med. 2017 Jun 1;7(6): [PMID: 28003277]
  14. J Am Stat Assoc. 2018 Nov 13;114(527):1339-1350 [PMID: 31708716]
  15. Nat Commun. 2020 Jan 17;11(1):376 [PMID: 31953392]
  16. J Am Stat Assoc. 2024;119(546):1205-1214 [PMID: 39077372]
  17. Front Behav Neurosci. 2017 Oct 31;11:211 [PMID: 29163083]
  18. Emerg Themes Epidemiol. 2018 Jan 22;15:1 [PMID: 29387137]
  19. Nat Rev Neurosci. 2009 May;10(5):333-44 [PMID: 19339974]
  20. J R Stat Soc Series B Stat Methodol. 2022 Apr;84(2):600-629 [PMID: 35450387]
  21. J Am Stat Assoc. 2012 Jan 1;107(497):223-232 [PMID: 22736876]
  22. J Am Stat Assoc. 2020;115(531):1304-1319 [PMID: 32973370]

Grants

  1. U01 AG073079/NIA NIH HHS
  2. R01 GM081535/NIGMS NIH HHS
  3. R01 AG074858/NIA NIH HHS
  4. R01 AG069895/NIA NIH HHS
  5. R01 AG065636/NIA NIH HHS
  6. R01 GM126002/NIGMS NIH HHS
  7. R01 GM113250/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0causalinferencediscoverymethodGrIVETconfoundersGaussiandirectedacyclicgraphunmeasuredprocedureinstrumentshiddennewinstrumentalestimationeffectsproposedinterventionsregulatorynetworkarticleproposesnovelcalledconsistsorder-basedlikelihood-basedinferentialgeneralizeexistingpeelingalgorithmestimateancestralrelationscandidatepresenceBasedproposevariabledirecteffectseparatingmediationdeveloplikelihoodratiotestmultipleableaccountTheoreticallyprovedesirableguaranteesincludingrobustnessinvaliduncertainconsistencylow-orderpolynomialtimecomplexityvalidityasymptoticNumericallyperformswellcomparesfavorablystate-of-the-artcompetitorsFurthermoredemonstrateutilityeffectivenessapplicationinferringpathwaysAlzheimer'sdiseasegeneexpressiondataDiscoveryconfoundingCausalGeneInvalidvariablesSimultaneousUncertain

Similar Articles

Cited By