A comprehensive method on black-legged tick larvae and nymph feeding on mice to study Lyme disease transmission and acquisition.

Aaron Scholl, Bingjie Li, John Dennis, Sandip De
Author Information
  1. Aaron Scholl: Tumor Vaccines and Biotechnology Branch, Division of Cellular Therapy 2, Office of Cellular Therapy and Human Tissue, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States.
  2. Bingjie Li: Tumor Vaccines and Biotechnology Branch, Division of Cellular Therapy 2, Office of Cellular Therapy and Human Tissue, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States.
  3. John Dennis: Division of Veterinary Services, Office of Management, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States.
  4. Sandip De: Tumor Vaccines and Biotechnology Branch, Division of Cellular Therapy 2, Office of Cellular Therapy and Human Tissue, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States.

Abstract

Tick-borne diseases are a growing public health concern in the United States, with cases rising steadily each year. Lyme borreliosis, or Lyme disease, remains the most prevalent, affecting approximately 476,000 individuals annually. Human-driven changes in climate and ecosystems have expanded the habitat of pathogen-carrying ticks, facilitating the spread of these infections. Additionally, increased instances of tick-borne diseases transmission through human tissues have been reported. Despite ongoing efforts to manage these infections, their incidence continues to rise. To develop effective control measures against these diseases and prevent the transmission of tick-borne infections through human and animal tissues, it is very important to develop detection assays and understand the transmission mechanisms of tick-borne infections. In this study, we provide detailed descriptions and visual references for larval and nymphal tick feeding on mice, focusing on the transmission and acquisition of (sensu stricto). These methodologies can be applied to study other tick-borne diseases, tick vectorial capacity, and tick biology, aiding in the development of detection strategies to combat these infections.

Keywords

References

  1. J Infect Dis. 1990 Jul;162(1):133-8 [PMID: 2141344]
  2. J Vis Exp. 2013 Aug 31;(78): [PMID: 24022694]
  3. J Med Entomol. 2002 Mar;39(2):285-92 [PMID: 11931028]
  4. Infect Immun. 2006 Jun;74(6):3678-81 [PMID: 16714602]
  5. Nat Genet. 2023 Feb;55(2):301-311 [PMID: 36658436]
  6. Sci Rep. 2023 Sep 27;13(1):16170 [PMID: 37758795]
  7. Clin Microbiol Rev. 2020 Jan 2;33(2): [PMID: 31896541]
  8. J Vis Exp. 2022 Nov 30;(189): [PMID: 36533815]
  9. Trends Parasitol. 2007 Sep;23(9):445-9 [PMID: 17681859]
  10. Nat Microbiol. 2023 Jan;8(1):162-173 [PMID: 36604510]
  11. Infect Immun. 2004 Nov;72(11):6702-6 [PMID: 15501807]
  12. Scand J Infect Dis. 2006;38(8):699-702 [PMID: 16857619]
  13. Emerg Infect Dis. 2015 Sep;21(9):1625-31 [PMID: 26291194]
  14. J Med Entomol. 2016 Mar;53(2):250-61 [PMID: 26681789]
  15. J Vis Exp. 2011 Feb 14;(48): [PMID: 21372782]
  16. J Clin Microbiol. 1994 Mar;32(3):755-8 [PMID: 8195390]
  17. J Vis Exp. 2017 May 8;(123): [PMID: 28518080]
  18. PLoS One. 2012;7(10):e47532 [PMID: 23133514]
  19. Emerg Infect Dis. 2021 Feb;27(2):616-619 [PMID: 33496229]
  20. Transfusion. 2016 Mar;56(3):699-704 [PMID: 26645855]
  21. Emerg Infect Dis. 2018 Aug;24(8):1548-1550 [PMID: 30016241]
  22. Trends Parasitol. 2018 Apr;34(4):295-309 [PMID: 29336985]
  23. Exp Appl Acarol. 2016 Nov;70(3):343-367 [PMID: 27651325]
  24. Am J Epidemiol. 1989 Jul;130(1):143-50 [PMID: 2787105]
  25. Transfusion. 2013 Jan;53(1):181-6 [PMID: 22563784]
  26. Comp Med. 2024 Aug 1;74(4):235-245 [PMID: 39289828]
  27. J Med Entomol. 2003 May;40(3):364-70 [PMID: 12943118]
  28. Transpl Infect Dis. 2014 Feb;16(1):119-24 [PMID: 24330198]
  29. J Med Entomol. 2003 Nov;40(6):964-7 [PMID: 14765677]
  30. J Med Entomol. 1994 Jan;31(1):178-80 [PMID: 8158624]
  31. Exp Parasitol. 1990 Jan;70(1):55-61 [PMID: 2295326]
  32. Emerg Infect Dis. 2002 Mar;8(3):320-3 [PMID: 11927032]
  33. J Parasitol. 1990 Oct;76(5):681-3 [PMID: 2213411]
  34. Methods Mol Biol. 2018;1690:105-114 [PMID: 29032540]
  35. Transpl Infect Dis. 2001 Mar;3(1):34-9 [PMID: 11429038]
  36. Cell. 2020 Sep 3;182(5):1328-1340.e13 [PMID: 32814014]
  37. PLoS Pathog. 2009 Dec;5(12):e1000679 [PMID: 19997622]
  38. JAMA. 1978 Jun 30;239(26):2763-5 [PMID: 418193]
  39. Acta Trop. 2021 Mar;215:105818 [PMID: 33406442]
  40. Am J Trop Med Hyg. 1988 Jul;39(1):105-9 [PMID: 3400797]

Word Cloud

Created with Highcharts 10.0.0transmissioninfectionstickdiseasesLymetick-bornestudyfeedingmiceacquisitiondiseasehumantissuesdevelopdetectionTick-bornegrowingpublichealthconcernUnitedStatescasesrisingsteadilyyearborreliosisremainsprevalentaffectingapproximately476000individualsannuallyHuman-drivenchangesclimateecosystemsexpandedhabitatpathogen-carryingticksfacilitatingspreadAdditionallyincreasedinstancesreportedDespiteongoingeffortsmanageincidencecontinuesriseeffectivecontrolmeasurespreventanimalimportantassaysunderstandmechanismsprovidedetaileddescriptionsvisualreferenceslarvalnymphalfocusingsensustrictomethodologiescanappliedvectorialcapacitybiologyaidingdevelopmentstrategiescombatcomprehensivemethodblack-leggedlarvaenymphBorreliaburgdorferi

Similar Articles

Cited By

No available data.