Multivariate-coupled-enhanced photoacoustic spectroscopy with Chebyshev rational fractional-order filtering algorithm for trace CH detection.

Shenlong Zha, Hang Chen, Chen Liu, Yuxiang Guo, Hongliang Ma, Qilei Zhang, Lingli Li, Shengbao Zhan, Gang Cheng, Yanan Cao, Pan Pan
Author Information
  1. Shenlong Zha: School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing, Anhui 246133, China.
  2. Hang Chen: School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing, Anhui 246133, China.
  3. Chen Liu: School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing, Anhui 246133, China.
  4. Yuxiang Guo: School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing, Anhui 246133, China.
  5. Hongliang Ma: School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing, Anhui 246133, China.
  6. Qilei Zhang: School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing, Anhui 246133, China.
  7. Lingli Li: School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing, Anhui 246133, China.
  8. Shengbao Zhan: School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing, Anhui 246133, China.
  9. Gang Cheng: State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China.
  10. Yanan Cao: State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China.
  11. Pan Pan: School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing, Anhui 246133, China.

Abstract

An innovative and miniature photoacoustic spectroscopy (PAS) gas sensor based on a multivariate-coupled amplification photoacoustic cell (MVCA-PAC) with a total length of 100���mm was developed to achieve ultra-sensitive trace CH detection. Acoustic pressure distribution simulations reveal that at the first-order resonance frequency, the MVCA-PAC achieves a maximum acoustic pressure approximately 3.9 times higher than that of a conventional photoacoustic cell. The absorption optical path of the MVCA-PAC reached 2068���mm through 22 reflections, resulting in a 2-fold increase in the amplitude of photoacoustic signals compared to the traditional photoacoustic cell with an equivalent absorption optical path. Furthermore, compared to a single-pass photoacoustic cell, the signal intensity of the MVCA-PAC increased by a factor of 4.5. Allan variance analysis indicated a detection limit of 0.572���ppm for CH detection with an averaging time of approximately 300���s. To further improve the measurement precision of the designed sensor, the Chebyshev rational fractional-order filtering (CRFOF) algorithm was introduced for PAS signal processing for the first time. Post-processing results demonstrated a 15.4-fold improvement in measurement precision, achieving a precision of 0.578���ppm. Finally, continuous monitoring of atmospheric CH over a 48-hour period validated the reliability and feasibility of the sensor.

Keywords

References

  1. Science. 2014 Jan 31;343(6170):493-5 [PMID: 24482471]
  2. Photoacoustics. 2023 Sep 12;33:100557 [PMID: 38021284]
  3. Opt Express. 2019 May 13;27(10):14163-14172 [PMID: 31163869]
  4. Opt Express. 2024 Jul 29;32(16):28183-28194 [PMID: 39538640]
  5. Light Sci Appl. 2024 May 1;13(1):100 [PMID: 38693126]
  6. Opt Lett. 2022 Feb 1;47(3):601-604 [PMID: 35103686]
  7. Light Sci Appl. 2023 Sep 15;12(1):234 [PMID: 37714845]
  8. eLight. 2024;4(1):18 [PMID: 39415946]
  9. Light Sci Appl. 2024 Mar 8;13(1):70 [PMID: 38453917]
  10. Light Sci Appl. 2024 Feb 29;13(1):61 [PMID: 38418840]
  11. Photoacoustics. 2024 Jul 09;38:100634 [PMID: 39100198]
  12. Sensors (Basel). 2023 Mar 20;23(6): [PMID: 36991990]
  13. Photoacoustics. 2025 Jan 06;42:100683 [PMID: 39896068]
  14. Light Sci Appl. 2025 Jan 20;14(1):54 [PMID: 39828747]
  15. Photoacoustics. 2023 Mar 16;30:100473 [PMID: 36970564]
  16. Photoacoustics. 2022 Dec 30;29:100443 [PMID: 36632604]
  17. Anal Chem. 2024 Mar 19;96(11):4562-4569 [PMID: 38451124]
  18. Photoacoustics. 2022 Dec 01;29:100428 [PMID: 36544534]
  19. Light Sci Appl. 2024 Oct 28;13(1):299 [PMID: 39465259]
  20. Anal Chem. 2022 Dec 20;94(50):17522-17532 [PMID: 36468977]
  21. Opt Express. 2018 Nov 26;26(24):32103-32110 [PMID: 30650676]
  22. Anal Chim Acta. 2022 Apr 15;1202:338894 [PMID: 35341511]
  23. Light Sci Appl. 2024 Jul 15;13(1):163 [PMID: 39004616]
  24. Light Sci Appl. 2023 Mar 4;12(1):48 [PMID: 36869075]
  25. Anal Chem. 2020 Aug 18;92(16):11035-11043 [PMID: 32674566]
  26. Opt Lett. 2022 Mar 15;47(6):1295-1298 [PMID: 35290297]
  27. Opt Lett. 2024 Feb 1;49(3):770-773 [PMID: 38300111]

Word Cloud

Created with Highcharts 10.0.0photoacousticcellMVCA-PACCHdetectionprecisionspectroscopysensorChebyshevrationalfractional-orderfilteringPASamplificationtracepressureapproximatelyabsorptionopticalpathcomparedsignallimit0timemeasurementalgorithminnovativeminiaturegasbasedmultivariate-coupledtotallength100���mmdevelopedachieveultra-sensitiveAcousticdistributionsimulationsrevealfirst-orderresonancefrequencyachievesmaximumacoustic39timeshigherconventionalreached2068���mm22reflectionsresulting2-foldincreaseamplitudesignalstraditionalequivalentFurthermoresingle-passintensityincreasedfactor45Allanvarianceanalysisindicated572���ppmaveraging300���simprovedesignedCRFOFintroducedprocessingfirstPost-processingresultsdemonstrated154-foldimprovementachieving578���ppmFinallycontinuousmonitoringatmospheric48-hourperiodvalidatedreliabilityfeasibilityMultivariate-coupled-enhancedDetectionMeasurementMultivariatecoupledPhotoacoustic

Similar Articles

Cited By

No available data.