The Effect of Edaravone Supplementation Prior to Cryopreservation on Sperm Parameters, DNA Integrity, Apoptosis, Lipid Peroxidation, and Mitochondrial Membrane Potential in Infertile Men with Asthenoteratozoospermia.

Mohammadrasool Ghasemi, Hamid Nazarian, Zahra Shams Mofarahe, Pourya Raee, Ali Moradi, Zohreh Khavari, Marefat Ghaffari Novin
Author Information
  1. Mohammadrasool Ghasemi: Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  2. Hamid Nazarian: Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  3. Zahra Shams Mofarahe: Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  4. Pourya Raee: Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  5. Ali Moradi: Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  6. Zohreh Khavari: Meybod Nursing School, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
  7. Marefat Ghaffari Novin: Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. mghaffarin@yahoo.com. ORCID

Abstract

Male infertility is a worldwide problem, and many couples have suffered from it. Although cryopreservation is widely used for the long-term preservation of human sperm, sperm survival, and function post-thawing procedure may be strongly impaired and thus decrease the reproductive performance. This study examined whether adding Edaravone before cryopreservation could improve the post-thaw parameters (especially sperm motility) of cryopreserved spermatozoa in patients with Asthenoteratozoospermia (AT). Semen samples were collected by masturbation from 25 men with AT and assessed following WHO standards. Samples were divided into three aliquots. The first aliquot remained untreated and freshly assessed (fresh group). The second aliquot was untreated, mixed with a cryopreservation medium, and cryopreserved (freeze group). The third aliquot was treated with ten ��M Edaravone, mixed with cryopreservation medium, and cryopreserved (freeze���+���Edaravone group). The groups were assessed for motility, morphology, viability, apoptosis, Lipid peroxidation, Mitochondrial Membrane Potential (MMP), DNA Fragmentation Index (DFI), glutathione (GSH), ATP, and ROS production. The freeze���+���Edaravone group significantly improved total sperm motility (P���<���0.0001), progressive and non-progressive sperm motility (P���<���0.01), viability (P���<���0.0001), morphology (P���<���0.001), DFI (P���<���0.0001) and live sperm cells (P���<���0.0001) post-thawing compared to freeze group. Additionally, the freeze���+���Edaravone group significantly decreased necrotic sperm cells (P���<���0.0001), Lipid peroxidation (P���<���0.0001), and intracellular ROS production (P���<���0.0001) post-thawing procedure. Furthermore, the freeze���+���Edaravone group significantly enhanced MMP jc-1 orange and green (P���<���0.0001 and P���<���0.01, respectively), ATP production (P���<���0.0001), and GSH levels (P���<���0.0001) post-thawing procedure compared to freeze group. Our findings proved that the freeze���+���Edaravone group of men with AT improved sperm survival and functions post-thawing procedure.

Keywords

References

  1. Tournaye H, Krausz C, Oates RD. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017;5(7):544���53. [PMID: 27395771]
  2. Krausz C, et al. Genetics of male infertility. In: Pyeritz RE, Korf BR, Grody WW, editors. Emery and Rimoin���s principles and practice of medical genetics and genomics (seventh edition). Academic Press. 2022. p. 121���147.
  3. Sudhakar DVS, Shah R, Gajbhiye RK. Genetics of male infertility - present and future: a narrative review. J Hum Reprod Sci. 2021;14(3):217���27. [PMID: 34759610]
  4. Kuroda S, et al. Genetic disorders and male infertility. Reproductive Med Biology. 2020;19(4):314���22. [DOI: 10.1002/rmb2.12336]
  5. Gunes S, Esteves SC. Role of genetics and epigenetics in male infertility. Andrologia. 2021;53(1):e13586. [PMID: 32314821]
  6. Tu C, et al. Bi-allelic mutations of DNAH10 cause primary male infertility with asthenoteratozoospermia in humans and mice. Am J Hum Genet. 2021;108(8):1466���77. [PMID: 34237282]
  7. Liu C et al. Novel mutations in X-Linked, USP26-Induced Asthenoteratozoospermia and male infertility. Cells, 2021;10(7).
  8. Sabeti P, Pourmasumi S, Fagheirelahee N. Effect of selenium and vitamin E on the level of sperm HSPA2+, intracellular superoxide anion and chromatin integrity in idiopathic asthenoteratozoospermia: a double-blind, randomized, placebo-controlled trial. Urol J. 2021;18(05):549���55. [PMID: 34516655]
  9. Jugwirth A, et al. Guidelines on male infertility. Eur Assotiation Urol. 2015;1:42���8.
  10. Dohle GR. Male infertility in cancer patients: review of the literature. Int J Urol. 2010;17(4):327���31. [PMID: 20202000]
  11. Liu S, Li F. Cryopreservation of single-sperm: where are we today? Reproductive Biology Endocrinol. 2020;18(1):41. [DOI: 10.1186/s12958-020-00607-x]
  12. Peris-Frau P et al. Sperm cryodamage in ruminants: understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. Int J Mol Sci, 2020;21(8).
  13. Mangoli E, et al. Vitamin C attenuates negative effects of vitrification on sperm parameters, chromatin quality, apoptosis and acrosome reaction in neat and prepared normozoospermic samples. Taiwan J Obstet Gynecol. 2018;57(2):200���4.
  14. Ebrahimi B, Matavos-Aramyan H, Keshtgar S. The cryoprotective effect of vitamins on human spermatozoa quality: a systematic review and meta-analysis. Cell Tissue Banking. 2022;23(2):213���25. [PMID: 34476664]
  15. Santonastaso M, et al. Protective effects of curcumin on the outcome of cryopreservation in human sperm. Reproductive Sci. 2021;28(10):2895���905. [DOI: 10.1007/s43032-021-00572-9]
  16. Tamburrino L et al. Cryopreservation of human spermatozoa: functional, molecular and clinical aspects. Int J Mol Sci, 2023;24(5).
  17. Zandiyeh S, et al. A novel approach for human sperm cryopreservation with AFPIII. Reprod Biol. 2020;20(2):169���74.
  18. Ivanova A, et al. Problems of human spermatozoa cryopreservation: research methods, solutions. Biophys Rev. 2023;15(5):1223���32.
  19. Khosravizadeh Z, et al. Sperm cryopreservation and DNA methylation: possible implications for ART success and the health of offspring. J Assist Reprod Genet. 2022;39(8):1815���24. [PMID: 35713751]
  20. Y��nez-Ortiz I, et al. Advances in sperm cryopreservation in farm animals: cattle, horse, pig and sheep. Anim Reprod Sci. 2022;246:106904. [PMID: 34887155]
  21. Do G-Y, et al. Antioxidant effect of edaravone on the development of preimplantation porcine embryos against Hydrogen Peroxide-Induced oxidative stress. JET. 2015;30(4):289���98.
  22. Fan S-R, et al. Edaravone attenuates cadmium-induced toxicity by inhibiting oxidative stress and inflammation in ICR mice. Neurotoxicology. 2021;86:1���9. [PMID: 34174317]
  23. Shakkour Z, et al. Drug repurposing: promises of edaravone target drug in traumatic brain injury. Curr Med Chem. 2021;28(12):2369���91. [PMID: 32787753]
  24. Cho H, Shukla S. Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis. Pharmaceuticals (Basel) 2020;14(1).
  25. Fidalgo M, et al. Edaravone for acute ischemic stroke ��� systematic review with meta-analysis. Clin Neurol Neurosurg. 2022;219:107299.
  26. Ismail H, et al. Traumatic brain injury: oxidative stress and novel antioxidants such as mitoquinone and edaravone. Antioxidants (Basel); 2020;9(10).
  27. Spasi�� S, et al. Edaravone may prevent ferroptosis in ALS. Curr Drug Targets. 2020;21(8):776���80.
  28. ��elik ��, et al. Protective effect of edaravone on rat testis after valproic acid treatment. Journal of Research in Pharmacy; 2022.
  29. Novin MG, et al. Therapeutic effects of edaravone on azoospermia: free radical scavenging and autophagy modulation in testicular tissue of mice. J Reprod Infertility. 2022;23(2):73.
  30. Organization WH. WHO laboratory manual for the examination and processing of human semen. World Health Organization; 2021.
  31. Safian F, et al. Photobiomodulation with 810 nm wavelengths improves human sperms��� motility and viability in vitro. Photobiomodulation Photomed Laser Surg. 2020;38(4):222���31. [DOI: 10.1089/photob.2019.4773]
  32. Zaazaa A, et al. Effect of varicocelectomy and/or mast cells stabilizer on sperm DNA fragmentation in infertile patients with varicocele. Andrology. 2018;6(1):146���50. [PMID: 29195028]
  33. Len JS, Koh WSD, Tan S-X. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep. 2019;39(8):BSR20191601. [PMID: 31371631]
  34. Karabulut S, et al. Sperm selection with Annexin-V coated polystrene bead technique (APB-Tech): a novel and reliable method for the microscopic selection of viable and non-apoptotic sperm to be used for intracytoplasmic sperm injection. Theriogenology. 2022;194:92���103. [PMID: 36209549]
  35. Nazmara Z, Salehnia M, HosseinKhani S. Mitochondrial distribution and ATP content of vitrified, in vitro matured mouse oocytes. Avicenna J Med Biotechnol. 2014;6(4):210. [PMID: 25414783]
  36. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman���s reagent. Anal Biochem. 1968;25:192���205. [PMID: 4973948]
  37. Safian F, et al. Photobiomodulation preconditioned human semen protects sperm cells against detrimental effects of cryopreservation. Cryobiology. 2021;98:239���44. [PMID: 33223006]
  38. Safian F, et al. Comparative effect of photobiomodulation on human semen samples pre-and post-cryopreservation. Reproductive Sci. 2022;29(5):1463���70. [DOI: 10.1007/s43032-021-00805-x]
  39. Lanzafame FM, et al. Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online. 2009;19(5):638���59. [PMID: 20021713]
  40. Ozkavukcu S, et al. Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J Assist Reprod Genet. 2008;25:403���11. [PMID: 18704674]
  41. Pedersen H, Lebech PE. Ultrastructural changes in the human spermatozoon after freezing for artificial insemination. Fertil Steril. 1971;22(2):125���33. [PMID: 5544372]
  42. Di Santo M, et al. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Volume 2012. Advances in urology; 2012. p. 854837. 1.
  43. O���connell M, Mcclure N, Lewis S. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod. 2002;17(3):704���9. [PMID: 11870124]
  44. Said TM, Gaglani A, Agarwal A. Implication of apoptosis in sperm cryoinjury. Reprod Biomed Online. 2010;21(4):456���62. [PMID: 20800544]
  45. Bogle O, et al. Identification of protein changes in human spermatozoa throughout the cryopreservation process. Andrology. 2017;5(1):10���22. [PMID: 27860400]
  46. Yeste M, et al. Good and bad freezability boar ejaculates differ in the integrity of nucleoprotein structure after freeze-thawing but not in ROS levels. Theriogenology. 2013;79(6):929���39. [PMID: 23398739]
  47. Agarwal A, Durairajanayagam D, Du Plessis SS. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reproductive Biology Endocrinol. 2014;12:1���19. [DOI: 10.1186/1477-7827-12-112]
  48. Asa E, et al. Supplementation of freezing media with alpha lipoic acid preserves the structural and functional characteristics of sperm against cryodamage in infertile men with asthenoteratozoospermia. Cryobiology. 2020;96:166���74. [PMID: 32652098]
  49. JT A. Cryopreservation of sperm: indication, methods and results. J Urol. 2003;170:1079. [DOI: 10.1097/01.ju.0000084820.98430.b8]
  50. Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci. 2020;77:93���113. [PMID: 31377843]
  51. Ahmadinejad F, et al. Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants. 2017;6(3):51. [PMID: 28698499]
  52. Paasch U, et al. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod. 2004;71(6):1828���37. [PMID: 15286043]
  53. Thomson LK, et al. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod. 2009;24(9):2061���70. [PMID: 19525298]
  54. Wang AW, et al. Reactive oxygen species generation by seminal cells during cryopreservation. Urology. 1997;49(6):921���5. [PMID: 9187701]
  55. Taylor K, et al. Effect of antioxidant supplementation of cryopreservation medium on post-thaw integrity of human spermatozoa. Reprod Biomed Online. 2009;18(2):184���9. [PMID: 19192337]
  56. Brookes PS, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. American Journal of Physiology-Cell Physiology; 2004.
  57. Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45(7���8):466���72. [PMID: 20064600]
  58. Treulen F, et al. Cryopreservation induces mitochondrial permeability transition in a bovine sperm model. Cryobiology. 2018;83:65���74. [PMID: 29864412]
  59. Moraes CR, Meyers S. The sperm mitochondrion: organelle of many functions. Anim Reprod Sci. 2018;194:71���80. [PMID: 29605167]
  60. Hassanein EHM, et al. Edaravone alleviates methotrexate-induced testicular injury in rats: implications on inflammation, steroidogenesis, and Akt/p53 signaling. Int Immunopharmacol. 2023;117:109969. [PMID: 37012866]
  61. Tsounapi P, et al. Antioxidant treatment with edaravone or taurine ameliorates diabetes-induced testicular dysfunction in the rat. Mol Cell Biochem. 2012;369(1):195���204. [PMID: 22763673]
  62. Ghaffari Novin M, et al. Therapeutic effects of edaravone on azoospermia: free radical scavenging and autophagy modulation in testicular tissue of mice. J Reprod Infertil. 2022;23(2):73���83. [PMID: 36043135]

Word Cloud

Created with Highcharts 10.0.0P���<���00001groupspermpost-thawingfreeze���+���EdaravonecryopreservationprocedureEdaravonemotilitycryopreservedATassessedaliquotfreezeproductionsignificantlysurvivalmenuntreatedmixedmediummorphologyviabilitylipidperoxidationMitochondrialMembranePotentialMMPDNADFIGSHATPROSimproved01cellscomparedCryopreservationSpermAsthenoteratozoospermiaMaleinfertilityworldwideproblemmanycouplessufferedAlthoughwidelyusedlong-termpreservationhumanfunctionmaystronglyimpairedthusdecreasereproductiveperformancestudyexaminedwhetheraddingimprovepost-thawparametersespeciallyspermatozoapatientsasthenoteratozoospermia Semensamplescollectedmasturbation25followingWHOstandardsSamplesdividedthreealiquotsfirstremainedfreshlyfreshsecondthirdtreatedten��MgroupsapoptosisFragmentationIndexglutathione Thetotalprogressivenon-progressive001liveAdditionallydecreasednecroticintracellularFurthermoreenhancedjc-1orangegreenrespectivelylevels OurfindingsprovedfunctionsEffectSupplementationPriorParametersIntegrityApoptosisLipidPeroxidationInfertileMen

Similar Articles

Cited By