Monocytic myeloid-derived suppressor cells contribute to the exacerbation of bone destruction in periodontitis.

Zhaocai Zhou, Chi Zhan, Wenchuan Li, Wenji Luo, Yufeng Liu, Feng He, Yaguang Tian, Zhengmei Lin, Zhi Song
Author Information
  1. Zhaocai Zhou: Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
  2. Chi Zhan: Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
  3. Wenchuan Li: Guangzhou First People's Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
  4. Wenji Luo: Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
  5. Yufeng Liu: Guangzhou First People's Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
  6. Feng He: Guangzhou First People's Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
  7. Yaguang Tian: Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China. yaguangtian@163.com.
  8. Zhengmei Lin: Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China. linzhm@mail.sysu.edu.cn.
  9. Zhi Song: Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China. songzh@mail.sysu.edu.cn. ORCID

Abstract

BACKGROUND: Periodontitis (PD) is a chronic infectious and inflammatory disease characterized by alveolar bone loss. The distinctive activity of immune cells critically exacerbates bone resorption in PD. Myeloid-derived suppressor cells (MDSCs) are known to contribute to various chronic inflammatory conditions, but their role in the pathogenesis and progression of PD remains poorly understood.
METHODS: We used single-cell transcriptomic analysis with human gingival samples and animal models of experimental periodontitis to examine the role of M-MDSCs in PD. We also explored the therapeutic effect of depleting MDSCs on PD in vivo. Additionally, the mechanisms of long non-coding RNA Neat1 and the pathway of NF-��B-dependent "canonical NLRP3 inflammasome activation" in MDSCs were investigated in PD.
RESULTS: In this study, we revealed that monocytic (M)-MDSCs were significantly increased in inflamed gingiva of PD patients compared to healthy individuals. Expansion of M-MDSCs was also observed in the mouse model of ligature-induced periodontitis, and depletion of MDSCs in PD mice could ameliorate alveolar bone loss and reduce periodontal inflammation. Mechanistically, we found that long non-coding RNA Neat1 was significantly upregulated in M-MDSCs, which achieved this proinflammatory effect by activating NF-��B signaling in PD. Furthermore, the pathway of NF-��B-dependent "canonical NLRP3 inflammasome activation" was confirmed in the PD mouse model, accompanied by increased secretion of proinflammatory cytokines that drive alveolar bone loss, including IL-1��, IL-6 and TNF-��.
CONCLUSIONS: In conclusion, this study highlights the pivotal proinflammatory role of M-MDSCs in PD and suggests that targeting these cells may represent a novel immunotherapeutic approach. Future research could focus on strategies to specifically target MDSCs for the treatment of periodontitis.

Keywords

References

  1. Cell. 2016 Feb 25;164(5):896-910 [PMID: 26919428]
  2. Sci Immunol. 2020 Feb 21;5(44): [PMID: 32086381]
  3. Ann Rheum Dis. 2022 Jan;81(1):100-107 [PMID: 34615636]
  4. Rheumatology (Oxford). 2021 May 14;60(5):2409-2420 [PMID: 33246326]
  5. Sci Transl Med. 2016 Mar 23;8(331):331ra40 [PMID: 27009269]
  6. J Mol Endocrinol. 2018 Oct 15;61(4):231-239 [PMID: 30328354]
  7. Curr Opin Immunol. 2010 Apr;22(2):238-44 [PMID: 20171075]
  8. Nat Protoc. 2018 Oct;13(10):2247-2267 [PMID: 30218100]
  9. Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2400528121 [PMID: 39186644]
  10. Ann Rheum Dis. 2024 Jan 2;83(1):15-29 [PMID: 37827694]
  11. J Immunol. 2009 Feb 15;182(4):2395-404 [PMID: 19201894]
  12. Nat Commun. 2019 Apr 2;10(1):1495 [PMID: 30940803]
  13. Mol Aspects Med. 2020 Dec;76:100889 [PMID: 32859386]
  14. Bioinform Adv. 2022 Mar 08;2(1):vbac016 [PMID: 36699385]
  15. Clin Immunol. 2015 Apr;157(2):175-86 [PMID: 25680967]
  16. Trends Biochem Sci. 2018 Feb;43(2):124-135 [PMID: 29289458]
  17. Int J Clin Exp Pathol. 2019 Apr 01;12(4):1174-1183 [PMID: 31933932]
  18. Cancer Res. 2013 Aug 1;73(15):4606-10 [PMID: 23887974]
  19. J Periodontal Res. 2023 Feb;58(1):70-82 [PMID: 36346119]
  20. Int J Mol Sci. 2022 May 11;23(10): [PMID: 35628185]
  21. Acta Biomater. 2022 Apr 1;142:345-360 [PMID: 35151924]
  22. Nat Rev Dis Primers. 2017 Jun 22;3:17038 [PMID: 28805207]
  23. Biochim Biophys Acta Mol Basis Dis. 2020 Jan 1;1866(1):165554 [PMID: 31513833]
  24. Cell Prolif. 2021 Feb;54(2):e12973 [PMID: 33382502]
  25. Nat Immunol. 2019 Jan;20(1):40-49 [PMID: 30455459]
  26. Cell Death Dis. 2023 Sep 16;14(9):610 [PMID: 37716986]
  27. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  28. Nat Rev Immunol. 2009 Mar;9(3):162-74 [PMID: 19197294]
  29. J Immunol. 2024 Dec 1;213(11):1635-1643 [PMID: 39465979]
  30. Front Neurol. 2019 Apr 24;10:323 [PMID: 31105630]
  31. Oncogene. 2020 Feb;39(7):1543-1556 [PMID: 31685946]
  32. Int J Mol Med. 2018 Nov;42(5):2903-2913 [PMID: 30132508]
  33. Int J Oral Sci. 2021 Dec 14;13(1):43 [PMID: 34907166]
  34. Cell Mol Immunol. 2021 Sep;18(9):2224-2235 [PMID: 32678310]
  35. Nat Immunol. 2017 Aug 22;18(9):962-972 [PMID: 28829444]
  36. Ann Rheum Dis. 2016 Jan;75(1):278-85 [PMID: 25371442]
  37. Clin Cancer Res. 2017 Jun 15;23(12):2942-2950 [PMID: 27965309]
  38. J Dent Res. 2021 Jul;100(8):798-809 [PMID: 33655803]
  39. Theranostics. 2022 Jan 1;12(3):1074-1096 [PMID: 35154475]
  40. Nat Methods. 2018 Dec;15(12):1053-1058 [PMID: 30504886]
  41. Periodontol 2000. 2020 Jun;83(1):7-13 [PMID: 32385880]
  42. Front Immunol. 2020 Oct 14;11:567783 [PMID: 33154749]
  43. Cell Mol Immunol. 2023 May;20(5):548-550 [PMID: 37012396]
  44. Bioengineered. 2022 Feb;13(2):2336-2345 [PMID: 35034548]
  45. J Dent Res. 2022 Mar;101(3):348-356 [PMID: 34636272]
  46. Cell. 2020 Apr 16;181(2):442-459.e29 [PMID: 32302573]
  47. Blood. 2011 Apr 7;117(14):3720-32 [PMID: 21304099]
  48. Adv Sci (Weinh). 2024 Jun;11(24):e2308587 [PMID: 38647388]
  49. J Autoimmun. 2015 Dec;65:82-9 [PMID: 26318644]
  50. Acta Pharm Sin B. 2023 Jun;13(6):2310-2333 [PMID: 37425066]
  51. Mol Cancer. 2021 Dec 14;20(1):165 [PMID: 34906138]
  52. J Leukoc Biol. 2021 Sep;110(3):461-473 [PMID: 34057740]
  53. Nat Commun. 2016 Jul 06;7:12150 [PMID: 27381735]
  54. Cell. 2021 Jul 22;184(15):4090-4104.e15 [PMID: 34129837]
  55. Signal Transduct Target Ther. 2017;2: [PMID: 29158945]
  56. Cell Syst. 2020 Jul 22;11(1):95-101.e5 [PMID: 32592658]
  57. Nat Commun. 2017 Apr 06;8:14979 [PMID: 28382931]
  58. Cells. 2022 Jan 17;11(2): [PMID: 35053426]
  59. Nat Rev Clin Oncol. 2024 Feb;21(2):147-164 [PMID: 38191922]

Grants

  1. 81600862/National Natural Science Foundation of China
  2. 81860195/National Natural Science Foundation of China
  3. 82170939/National Natural Science Foundation of China
  4. 2023A1515010519/Natural Science Foundation of Guangdong Province
  5. 822CXTD534/Natural Science Foundation of Hainan Province
  6. ZDYF2021SHFZ229/Hainan Province Science and Technology Special Fund

MeSH Term

Myeloid-Derived Suppressor Cells
Animals
Periodontitis
Humans
Alveolar Bone Loss
Monocytes
RNA, Long Noncoding
Mice, Inbred C57BL
NF-kappa B
NLR Family, Pyrin Domain-Containing 3 Protein
Disease Models, Animal
Gingiva
Male
Inflammasomes
Mice
Inflammation
Disease Progression
Signal Transduction
Female

Chemicals

RNA, Long Noncoding
NF-kappa B
NLR Family, Pyrin Domain-Containing 3 Protein
Inflammasomes

Word Cloud

Created with Highcharts 10.0.0PDMDSCsbonecellsperiodontitisM-MDSCsalveolarlossroleNeat1NLRP3proinflammatoryPeriodontitischronicinflammatorysuppressorcontributealsoeffectlongnon-codingRNApathwayNF-��B-dependent"canonicalinflammasomeactivation"studysignificantlyincreasedmousemodelBACKGROUND:infectiousdiseasecharacterizeddistinctiveactivityimmunecriticallyexacerbatesresorptionMyeloid-derivedknownvariousconditionspathogenesisprogressionremainspoorlyunderstoodMETHODS:usedsingle-celltranscriptomicanalysishumangingivalsamplesanimalmodelsexperimentalexamineexploredtherapeuticdepletingvivoAdditionallymechanismsinvestigatedRESULTS:revealedmonocyticM-MDSCsinflamedgingivapatientscomparedhealthyindividualsExpansionobservedligature-induceddepletionmiceamelioratereduceperiodontalinflammationMechanisticallyfoundupregulatedachievedactivatingNF-��BsignalingFurthermoreconfirmedaccompaniedsecretioncytokinesdriveincludingIL-1��IL-6TNF-��CONCLUSIONS:conclusionhighlightspivotalsuggeststargetingmayrepresentnovelimmunotherapeuticapproachFutureresearchfocusstrategiesspecificallytargettreatmentMonocyticmyeloid-derivedexacerbationdestructionInflammation

Similar Articles

Cited By