Thanatochemistry and the role of hypoxanthine in the post-mortem interval estimation: a systematic literature review.

Andrea Nicola Cardinale, Antonio Di Lorenzo, Mara Bellino, Giuseppe Strisciullo, Valentina Mussi, Sara Sablone
Author Information
  1. Andrea Nicola Cardinale: Section of Legal Medicine, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari Policlinico Hospital, Bari, Italy. ORCID
  2. Antonio Di Lorenzo: Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari Policlinico Hospital, Bari, Italy.
  3. Mara Bellino: Section of Legal Medicine, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari Policlinico Hospital, Bari, Italy. ORCID
  4. Giuseppe Strisciullo: Toxicology Laboratory, Interdisciplinary Department of Medicine, University of Bari Aldo Moro Bari Policlinico Hospital, Bari, Italy. ORCID
  5. Valentina Mussi: IMM CNR, Institute of Microelectronics and Microsystems, National Research Council, Rome, Italy. ORCID
  6. Sara Sablone: Section of Legal Medicine, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari Policlinico Hospital, Bari, Italy. sara.sablone@uniba.it. ORCID

Abstract

The estimation of post-mortem interval (PMI) is of utmost importance for forensic pathologists due to its implication in medico-legal evaluations. Research over the last thirty years has sought new methods for estimating the time of death, particularly focused on human biomarkers whose concentration changes over time after death. Although most studies are based on potassium (K) concentrations in blood and vitreous humor (VH), hypoxanthine (Hx) has shown great promise in assessing PMI. Following PRISMA guidelines, this systematic review addresses the PICO question: "In human cadavers, what is the role of hypoxanthine, where, and with what analytical techniques is it currently used for post-mortem interval estimation?". Twenty-four papers were retrieved. The results indicate that Hx concentration can be estimated in various biofluids, VH being the most commonly accounted for. Furthermore, different pre-analytical procedures are resorted to for sample preparation, such as several methodologies utilized to detect Hx concentration. The relationship between the so-obtained Hx levels and PMI is expressed quantitively (through regressions or correlation coefficients) or semi-quantitatively (by changes in nuclear magnetic resonance spectra). PMI estimation accuracy improves significantly when additional factors are considered (such as ambient and rectal temperature, urea concentration, body weight, and cause of death) or when new methodologies providing flexible regression models are applied. Despite the promising potential, many limitations remain. Notably, the heterogeneity of sample selection and pre-analytical/analytical phases leads to inconsistent results. Thus, much more should be done to lay procedural standards and optimize biochemistry and Hx utilization in PMI-related forensic investigations.

Keywords

References

  1. Sturner WQ, Gantner GEJ (1964) The postmortem interval. A study of potassium in the vitreous humor. Am J Clin Pathol 42:137–144. https://doi.org/10.1093/ajcp/42.2.137 [DOI: 10.1093/ajcp/42.2.137]
  2. Coe JI (1989) Vitreous potassium as a measure of the postmortem interval: an historical review and critical evaluation. Forensic Sci Int 42(3):201–213. https://doi.org/10.1016/0379-0738(89)90087-x [DOI: 10.1016/0379-0738(89)90087-x]
  3. Li C, Wang Q, Zhang Y, Hancheng L, Zhang L, Huang P, Wang Z (2016) Research progress in the estimation of the postmortem interval by Chinese forensic scholars. Forensic Sci Res 1(1):3–13. https://doi.org/10.1080/20961790.2016.1229377 [DOI: 10.1080/20961790.2016.1229377]
  4. Madea B, Rödig A (2006) Precision of estimating the time since death using different criteria of supravital muscular excitability. Forensic Sci Med Pathol 2(2):127–133. https://doi.org/10.1385/FSMP:2:2:127 [DOI: 10.1385/FSMP]
  5. Madea B, Henssge C (2003) Time since death. In: Payne-James J, Busuttil A (eds) Forensic Medicine: Clinical and Pathological Aspects. Greenwich Medical Media Limited, London, pp 91–114
  6. Buchan MJ, Anderson GS (2011) Time Since Death: A Review of the Current Status of Methods used in the Later Postmortem Interval. Can Soc Forensic Sci J 34(1):1–22. https://doi.org/10.1080/00085030.2001.10757514 [DOI: 10.1080/00085030.2001.10757514]
  7. Henssge C, Mohr RM, Tomberlin JK (1988) Death time estimation in case work .I. The rectal temperature time of death nomogram. Forensic Sci Int 129(3–4):209–236. https://doi.org/10.1016/0379-0738(88)90168 [DOI: 10.1016/0379-0738(88)90168]
  8. Mohr RM, Tomberlin JK (2015) Development and validation of a new technique for estimating a minimum postmortem interval using adult blow fly (Diptera: Calliphoridae) carcass attendance. Int J Legal Med 129(4):851–859. https://doi.org/10.1007/s00414-014-1094-x [DOI: 10.1007/s00414-014-1094-x]
  9. Madea B, Musshoff F (2007) Postmortem biochemistry. Forensic Sci Int 165(2–3):165–171. https://doi.org/10.1016/j.forsciint.2006.05.023 [DOI: 10.1016/j.forsciint.2006.05.023]
  10. Gelderman T, Stigter E, Krap T, Amendt J, Duijst W (2021) The time of death in Dutch court; using the Daubert criteria to evaluate methods to estimate the PMI used in court. Leg Med (Tokyo) 53:101970. https://doi.org/10.1016/j.legalmed.2021.101970 [DOI: 10.1016/j.legalmed.2021.101970]
  11. Meurs J, Krap T, Duijst W (2019) Evaluation of postmortem biochemical markers: Completeness of data and assessment of implication in the field. Sci Justice 59(2):177–180. https://doi.org/10.1016/j.scijus.2018.09.002 [DOI: 10.1016/j.scijus.2018.09.002]
  12. Stigter H, Krap T, Duijst WLJM (2024) Estimation of the post-mortem interval; added value of mechanical excitability of human skeletal muscle. J Forensic Leg Med 103:102664. https://doi.org/10.1016/j.jflm.2024.102664 [DOI: 10.1016/j.jflm.2024.102664]
  13. Zhang XD, Jiang YR, Liang XR, Tian T, Jin QQ, Zhang XH, Cao J, DU, Q. X., & Sun, J. H. (2023) Postmortem Interval Estimation Using Protein Chip Technology Combined with Multivariate Analysis Methods. Fa yi xue za zhi 39(2):115–120. https://doi.org/10.12116/j.issn.1004-5619.2022.420407 [DOI: 10.12116/j.issn.1004-5619.2022.420407]
  14. Henssge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henssge CA, Hoppe B, Schneider V (2000) Experiences with a compound method for estimating the time since death .II. Integration of non-temperature-based methods. Int J Legal Med 113(6):320–331. https://doi.org/10.1007/s004149900090 [DOI: 10.1007/s004149900090]
  15. Henssge C, Madea B (2004) Estimation of the time since death in the early post-mortem period. Forensic Sci Int 144(2–3):167–175. https://doi.org/10.1016/j.forsciint.2004.04.051 [DOI: 10.1016/j.forsciint.2004.04.051]
  16. Qing Chen Y, Feng Cai J, Fang Wen J (2009) Advances in the studies of postmortem interval estimation by the levels of chemical components in human vitreous humor after death. Fa Yi Xue Za Zhi 25(1):53–56
  17. Pittner S, Ehrenfellner B, Zissler A, Racher V, Trutschnig W, Bathke A, Sänger AM, Stoiber W, Steinbacher P, Monticelli FC (2017) First application of a protein-based approach for time since death estimation. Int J Legal Med 131(2):479–483. https://doi.org/10.1007/s00414-016-1459-4 [DOI: 10.1007/s00414-016-1459-4]
  18. Kominato Y, Kumada K, Yamazaki K, Misawa S (1989) Estimation of postmortem interval using kinetic analysis of the third component of complement (C3) cleavage. J Forensic Sci 34(1):207–217 [DOI: 10.1520/JFS12623J]
  19. Yadav J, Deshpande A, Arora A, Athawal BK, Dubey BP (2007) Estimation of time since death from CSF electrolyte concentration in Bhopal region of central India. Leg Med (Tokyo) 9(6):309–313. https://doi.org/10.1016/j.legalmed.2007.05.001 [DOI: 10.1016/j.legalmed.2007.05.001]
  20. Madea B, Käferstein H, Hermann N, Sticht G (1994) Hypoxanthine in vitreous humor and cerebrospinal fluid–a marker of postmortem interval and prolonged (vital) hypoxia? Remarks also on hypoxanthine in SIDS. Forensic Sci Int 65(1):19–31. https://doi.org/10.1016/0379-0738(94)90296-8 [DOI: 10.1016/0379-0738(94)90296-8]
  21. Camba A, Lendoiro E, Cordeiro C, Martínez-Silva M, Rodríguez-Calvo MS, Vieira DN, Muñoz-Barús JI (2014) High variation in hypoxanthine determination after analytical treatment of vitreous humor samples. Forensic Sci Med Pathol 10(4):627–633. https://doi.org/10.1007/s12024-014-9590-3 [DOI: 10.1007/s12024-014-9590-3]
  22. James RA, Hoadley PA, Sampson BG (1997) Determination of postmortem interval by sampling vitreous humour. Am J Forensic Med Pathol 18(2):158–162. https://doi.org/10.1097/00000433-199706000-00010 [DOI: 10.1097/00000433-199706000-00010]
  23. Rognum TO, Hauge S, Oyasaeter S, Saugstad OD (1991) A new biochemical method for estimation of postmortem time. Forensic Sci Int 51(1):139–146. https://doi.org/10.1016/0379-0738(91)90214-4 [DOI: 10.1016/0379-0738(91)90214-4]
  24. Muñoz JI, Suárez-Peñaranda JM, Otero XL, Rodríguez-Calvo MS, Costas E, Miguéns X, Concheiro L (2001) A new perspective in the estimation of postmortem interval (PMI) based on vitreous. J Forensic Sci 46(2):209–214 [DOI: 10.1520/JFS14950J]
  25. Madea B (2005) Is there recent progress in the estimation of the postmortem interval by means of thanatochemistry? Forensic Sci Int 151(2–3):139–149. https://doi.org/10.1016/j.forsciint.2005.01.013 [DOI: 10.1016/j.forsciint.2005.01.013]
  26. Madea B (2014) Handbook of forensic medicine. Wiley Blackwell, Hoboken
  27. Zhou C, Byard RW (2011) Factors and processes causing accelerated decomposition in human cadavers - An overview. J Forensic Leg Med 18(1):6–9. https://doi.org/10.1016/j.jflm.2010.10.003 [DOI: 10.1016/j.jflm.2010.10.003]
  28. Mann RW, Bass WM, Meadows, (1990) Time since death and decomposition of the human body: variables and observations in case and experimental field studies. J Forensic Sci 35(1):103–111 [DOI: 10.1520/JFS12806J]
  29. Sablone S, Campobasso C, Tettamanti C, Cardinale AN, Argo A, Tambone V, Gaudio RM, Cecchi R, Introna F (2024) Gender-based approach: an essential tool in patient safety management and forensic medicine practice. J Sex Gender Specif Med 10(3):167–168. https://doi.org/10.1723/4343.43288 [DOI: 10.1723/4343.43288]
  30. Madea B (2016) Methods for determining time of death. Forensic Sci Med Pathol 12(4):451–485. https://doi.org/10.1007/s12024-016-9776-y [DOI: 10.1007/s12024-016-9776-y]
  31. Tumram NK, Ambade VN, Dongre AP (2014) Thanatochemistry: Study of synovial fluid potassium. Alexandria J Med 50(4):369–372. https://doi.org/10.1016/j.ajme.2014.02.005 [DOI: 10.1016/j.ajme.2014.02.005]
  32. Muñoz JI, Costas E, Rodríguez-Calvo MS, Suárez-Peñaranda JM, López-Rivadulla M, Concheiro L (2006) A high-performance liquid chromatography method for hypoxanthine determination in vitreous humour: application to estimation of post mortem interval. Hum Exp Toxicol 25(5):279–281. https://doi.org/10.1191/0960327106ht615oa [DOI: 10.1191/0960327106ht615oa]
  33. Zilg B, Bernard S, Alkass K, Berg S, Druid H (2015) A new model for the estimation of time of death from vitreous potassium levels corrected for age and temperature. Forensic Sci Int 254:158–166. https://doi.org/10.1016/j.forsciint.2015.07.020 [DOI: 10.1016/j.forsciint.2015.07.020]
  34. Thierauf A, Musshoff F, Madea B (2009) Post-mortem biochemical investigations of vitreous humor. Forensic Sci Int 192(1–3):78–82. https://doi.org/10.1016/j.forsciint.2009.08.001 [DOI: 10.1016/j.forsciint.2009.08.001]
  35. Coe JI, Apple FS (1985) Variations in vitreous humor chemical values as a result of instrumentation. J Forensic Sci 30(3):828–835 [DOI: 10.1520/JFS11016J]
  36. Blana SA, Musshoff F, Hoeller T, Fimmers R, Madea B (2011) Variations in vitreous humor chemical values as a result of pre-analytical treatment. Forensic Sci Int 210(1–3):263–270. https://doi.org/10.1016/j.forsciint.2011.03.023 [DOI: 10.1016/j.forsciint.2011.03.023]
  37. Swain R, Kumar A, Sahoo J, Lakshmy R, Gupta SK (2015) Estimation of post-mortem interval: A comparison between cerebrospinal fluid and vitreous humour chemistry. J Forensic Leg Med 36:144–148. https://doi.org/10.1016/j.jflm.2015.09.017 [DOI: 10.1016/j.jflm.2015.09.017]
  38. Tumram NK, Bardale RV, Dongre AP (2011) Postmortem analysis of synovial fluid and vitreous humour for determination of death interval: A comparative study. Forensic Sci Int 204(1–3):186–190. https://doi.org/10.1016/j.forsciint.2010.06.007 [DOI: 10.1016/j.forsciint.2010.06.007]
  39. Zelentsova EA, Yanshole LV, Melnikov AD, Kudryavtsev IS, Novoselov VP, Tsentalovich YP (2020) Post-mortem changes in metabolomic profiles of human serum, aqueous humor and vitreous humor. Metabolomics 16(7):80. https://doi.org/10.1007/s11306-020-01700-3 [DOI: 10.1007/s11306-020-01700-3]
  40. Pigaiani N, Bertaso A, De Palo EF, Bortolotti F, Tagliaro F. Vitreous humor endogenous compounds analysis for post-mortem forensic investigation (2020) Forensic Sci Int 310:110235. https://doi.org/10.1016/j.forsciint.2020.110235
  41. He JF, Hong W, Shao Y, Han HQ, Xie B (2017) Application of MOAS for Evaluating of Violence Risk in the Inpatients with Mental Disorders. Fa Yi Xue Za Zhi 33(1):28–31. https://doi.org/10.3969/j.issn.1004-5619.2017.01.007 [DOI: 10.3969/j.issn.1004-5619.2017.01.007]
  42. Coe JI (1993) Postmortem chemistry update. Emphasis on forensic application. Am J Forensic Med Pathol 14(2):91–117. https://doi.org/10.1097/00000433-199306000-00001 [DOI: 10.1097/00000433-199306000-00001]
  43. Sturner W (1963) The vitreous humour: postmortem potassium changes. Lancet 281(7285):807–808. https://doi.org/10.1016/S0140-6736(63)91509-5 [DOI: 10.1016/S0140-6736(63)91509-5]
  44. Zilg B, Alkass K, Kronstrand R, Berg S, Druid H (2022) A Rapid Method for Postmortem Vitreous Chemistry—Deadside Analysis. Biomolecules 12(1). https://doi.org/10.3390/biom12010032
  45. Zelentsova EA, Yanshole LV, Snytnikova OA, Yanshole VV, Tsentalovich YP, Sagdeev RZ (2016) Post-mortem changes in the metabolomic compositions of rabbit blood, aqueous and vitreous humors. Metabolomics 12(11):172. https://doi.org/10.1007/s11306-016-1118-2 [DOI: 10.1007/s11306-016-1118-2]
  46. Li W, Chang Y, Cheng Z, Ling J, Han L, Li X, Ding Y (2018) Vitreous Humor: A Review of Biochemical Constituents in Postmortem Interval Estimation. J Forensic Sci Med 4(2):85–90. https://doi.org/10.4103/jfsm.jfsm_13_18 [DOI: 10.4103/jfsm.jfsm_13_18]
  47. Passos MLC, Santos AM, Pereira AI, Rodrigo Santos J, Santos AJ, Saraiva MLMFS, Lima JLFC (2009) Estimation of postmortem interval by hypoxanthine and potassium evaluation in vitreous humor with a sequential injection system. Talanta 79(4):1094–1099. https://doi.org/10.1016/j.talanta.2009.02.054 [DOI: 10.1016/j.talanta.2009.02.054]
  48. Muñoz Barús JI, Suárez-Peñaranda J, Otero XL, Rodríguez-Calvo MS, Costas E, Miguéns X, Concheiro L (2002) Improved estimation of postmortem interval based on differential behaviour of vitreous potassium and hypoxantine in death by hanging. Forensic Sci Int 125(1):67–74. https://doi.org/10.1016/s0379-0738(01)00616-8 [DOI: 10.1016/s0379-0738(01)00616-8]
  49. Muñoz-Barús JI, Rodríguez-Calvo MS, Suárez-Peñaranda JM, Vieira DN, Cadarso-Suárez C, Febrero-Bande M. PMICALC: an R code-based software for estimating post-mortem interval (PMI) compatible with Windows, Mac and Linux operating systems (2010) Forensic Sci Int 194(1–3):49–52. https://doi.org/10.1016/j.forsciint.2009.10.006
  50. Lendoiro E, Cordeiro C, Rodríguez-Calvo MS, Vieira DN, Suárez-Peñaranda JM, López-Rivadulla M, Muñoz-Barús JI (2012) Applications of Tandem Mass Spectrometry (LC-MSMS) in estimating the post-mortem interval using the biochemistry of the vitreous humour. Forensic Sci Int 223(1–3):160–164. https://doi.org/10.1016/j.forsciint.2012.08.022 [DOI: 10.1016/j.forsciint.2012.08.022]
  51. Poulsen JP, Rognum TO, Oyasaeter S, Saugstad OD (1990) Changes in oxypurine concentrations in vitreous humor of pigs during hypoxemia and post-mortem. Pediatr Res 28(5):482–484. https://doi.org/10.1203/00006450-199011000-00013 [DOI: 10.1203/00006450-199011000-00013]
  52. Rognum TO, Holmen S, Musse MA, Dahlberg PS, Stray-Pedersen A, Saugstad OD, Opdal SH (2016) Estimation of time since death by vitreous humor hypoxanthine, potassium, and ambient temperature. Forensic Sci Int 262:160–165. https://doi.org/10.1016/j.forsciint.2016.03.001 [DOI: 10.1016/j.forsciint.2016.03.001]
  53. Castro AL, Tarelho S, Dias M, Reis F, Teixeira HM (2016) Comparison of endogenous GHB concentrations in blood and hair in death cases with emphasis on the post mortem interval. Int J Legal Med 130(4):959–965. https://doi.org/10.1007/s00414-016-1321-8 [DOI: 10.1007/s00414-016-1321-8]
  54. Bonicelli A, Mickleburgh HL, Chighine A, Locci E, Wescott DJ, Procopio N (2022) The “ForensOMICS” approach for postmortem interval estimation from human bone by integrating metabolomics, lipidomics, and proteomics. Elife 11. https://doi.org/10.7554/eLife.83658
  55. Go A, Shim G, Park J, Hwang J, Nam M, Jeong H, Chung H (2019) Analysis of hypoxanthine and lactic acid levels in vitreous humor for the estimation of post-mortem interval (PMI) using LC-MS/MS. Forensic Sci Int 299:135–141. https://doi.org/10.1016/j.forsciint.2019.03.024 [DOI: 10.1016/j.forsciint.2019.03.024]
  56. Donaldson AE, Lamont IL (2013) Biochemistry changes that occur after death: potential markers for determining post-mortem interval. PLoS ONE 8(11):e82011. https://doi.org/10.1371/journal.pone.0082011 [DOI: 10.1371/journal.pone.0082011]
  57. Da Cunha EC, Ordóñez-Mayán L, Vázquez MLR, Vieira DN, Febrero-Bande M, Barús JIM (2023) The biochemistry of the vitreous humour in estimating the post-mortem interval-a review of the literature, and use in forensic practice in Galicia (northwestern Spain). Forensic Sci Med Pathol 19(2):236–265. https://doi.org/10.1007/s12024-022-00539-5 [DOI: 10.1007/s12024-022-00539-5]
  58. Saugstad OD (1975) Hypoxanthine as a measurement of hypoxia. Pediatr Res 9(4):158–161. https://doi.org/10.1203/00006450-197504000-00002 [DOI: 10.1203/00006450-197504000-00002]
  59. Harkness RA (1988) Hypoxanthine, xanthine and uridine in body fluids, indicators of ATP depletion. J Chromatogr 429:255–278. https://doi.org/10.1016/s0378-4347(00)83873-6 [DOI: 10.1016/s0378-4347(00)83873-6]
  60. Boulieu R, Bory C, Baltassat P, Gonnet C (1983) Hypoxanthine and xanthine levels determined by high-performance liquid chromatography in plasma, erythrocyte, and urine samples from healthy subjects: the problem of hypoxanthine level evolution as a function of time. Anal Biochem 129(2):398–404. https://doi.org/10.1016/0003-2697(83)90568-7 [DOI: 10.1016/0003-2697(83)90568-7]
  61. Poulsen JP, Oyasaeter S, Sanderud J, Rognum TO, Saugstad OD (1990) Hypoxanthine, xanthine, and uric acid concentrations in the cerebrospinal fluid, plasma, and urine of hypoxemic pigs. Pediatr Res 28(5):477–481. https://doi.org/10.1203/00006450-199011000-00012 [DOI: 10.1203/00006450-199011000-00012]
  62. Saugstad OD, Olaisen B (1978) Post-mortem hypoxanthine levels in the vitreous humour. An introductory report Forensic Sci 12(1):33–36. https://doi.org/10.1016/0379-0738(78)90031-2 [DOI: 10.1016/0379-0738(78)90031-2]
  63. Saugstad OD, Rognum TO (1988) High postmortem levels of hypoxanthine in the vitreous humor of premature babies with respiratory distress syndrome. Pediatrics 81(3):395–398 [PMID: 3422735]
  64. Rognum TO, Saugstad OD, Oyasaeter S, Olaisen B (1988) Elevated levels of hypoxanthine in vitreous humor indicate prolonged cerebral hypoxia in victims of sudden infant death syndrome. Pediatrics 82(4):615–618 [DOI: 10.1542/peds.82.4.615]
  65. Rognum TO, Saugstad OD (1991) Hypoxanthine levels in vitreous humor: evidence of hypoxia in most infants who died of sudden infant death syndrome. Pediatrics 87(3):306–310 [DOI: 10.1542/peds.87.3.306]
  66. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Murlow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71 [DOI: 10.1136/bmj.n71]
  67. Schiavenato M, Chu F (2021) PICO: What it is and what it is not. Nurse Educ Pract 56:103194. https://doi.org/10.1016/j.nepr.2021.103194 [DOI: 10.1016/j.nepr.2021.103194]
  68. Febrero Bande M, Ordóñez Mayán L, Cordeiro C, Vieira DN, Muñoz Barús JI (2023) IPMICALC: an Integrated Post-mortem Interval Calculator. Forensic Sci Med Pathol 19(3):468–472. https://doi.org/10.1007/s12024-022-00537-7 [DOI: 10.1007/s12024-022-00537-7]
  69. Chighine A, Stocchero M, Ferino G, De-Giorgio F, Conte C, Nioi M, D’Aloja E, Locci E (2023) Metabolomics investigation of post-mortem human pericardial fluid. Int J Legal Med 137(6):1875–1885. https://doi.org/10.1007/s00414-023-03050-w [DOI: 10.1007/s00414-023-03050-w]
  70. Carpenter KH, Bonham JR, Worthy E, Variend S (1993) Vitreous humour and cerebrospinal fluid hypoxanthine concentration as a marker of pre-mortem hypoxia in SIDS. J Clin Pathol 46(7):650–653. https://doi.org/10.1136/jcp.46.7.650 [DOI: 10.1136/jcp.46.7.650]
  71. Madea B, Rödig A (2006) Time of death dependent criteria in vitreous humor: accuracy of estimating the time since death. Forensic Sci Int 164(2–3):87–92. https://doi.org/10.1016/j.forsciint.2005.12.002 [DOI: 10.1016/j.forsciint.2005.12.002]
  72. Muñoz Barús JI, Febrero-Bande M, Cadarso-Suárez C (2008) Flexible regression models for estimating postmortem interval (PMI) in forensic medicine. Stat Med 27(24):5026–5038. https://doi.org/10.1002/sim.3319 [DOI: 10.1002/sim.3319]
  73. Pérez-Martínez C, Pérez-Cárceles MD, Legaz I, Prieto-Bonete G, Luna A (2017) Quantification of nitrogenous bases, DNA and Collagen type I for the estimation of the postmortem interval in bone remains. Forensic Sci Int 281:106–112. https://doi.org/10.1016/j.forsciint.2017.10.039 [DOI: 10.1016/j.forsciint.2017.10.039]
  74. Cordeiro C, Ordóñez-Mayán L, Lendoiro E, Febrero-Bande M, Vieira DN, Muñoz-Barús JI (2019) A reliable method for estimating the postmortem interval from the biochemistry of the vitreous humor, temperature and body weight. Forensic Sci Int 295:157–168. https://doi.org/10.1016/j.forsciint.2018.12.007 [DOI: 10.1016/j.forsciint.2018.12.007]
  75. Pérez-Martínez C, Prieto Bonete G, Pérez-Cárceles MD, Luna A (2020) Influence of the nature of death in biochemical analysis of the vitreous humour for the estimation of post-mortem interval. Aust J Forensic Sci 52(5):508–517. https://doi.org/10.1080/00450618.2019.1593503 [DOI: 10.1080/00450618.2019.1593503]
  76. Liao L, Xing Y, Xiong X, Gan L, Hu L, Zhao F, Tong Y, Deng S (2020) An electrochemical biosensor for hypoxanthine detection in vitreous humor: A potential tool for estimating the post-mortem interval in forensic cases. Microchem J 155:104760. https://doi.org/10.1016/j.microc.2020.104760 [DOI: 10.1016/j.microc.2020.104760]
  77. Donaldson AE, Lamont IL (2014) Estimation of post-mortem interval using biochemical markers. Aust J Forensic Sci 46(1):8–26. https://doi.org/10.1080/00450618.2013.784356 [DOI: 10.1080/00450618.2013.784356]
  78. Zięba S, Wiergowski M, Krzyżanowska M, Gos T, Sołtyszewski I (2021) Time of Death Estimation Based on the Analysis of Tanathochemical Processes in Forensic Medicine. Rom J Leg Med 29(3):261–271. https://doi.org/10.4323/rjlm.2021.261 [DOI: 10.4323/rjlm.2021.261]
  79. Swann LM, Forbes SL, Lewis SW (2010) Analytical separations of mammalian decomposition products for forensic science: a review. Anal Chim Acta 682(1–2):9–22. https://doi.org/10.1016/j.aca.2010.09.052 [DOI: 10.1016/j.aca.2010.09.052]
  80. Locci E, Bazzano G, Chighine A, Locco F, Ferraro E, Demontis R, D’Aloja E (2020) Forensic NMR metabolomics: one more arrow in the quiver. Metabolomics 16(11):118. https://doi.org/10.1007/s11306-020-01743-6 [DOI: 10.1007/s11306-020-01743-6]
  81. Peyron PA, Lehmann S, Delaby C, Baccino E, Hirtz C (2019) Biochemical markers of time since death in cerebrospinal fluid: A first step towards “Forensomics.” Crit Rev Clin Lab Sci 56(4):274–286. https://doi.org/10.1080/10408363.2019.1619158 [DOI: 10.1080/10408363.2019.1619158]
  82. Bévalot F, Cartiser N, Bottinelli C, Fanton L, Guitton J (2016) Vitreous humor analysis for the detection of xenobiotics in forensic toxicology: a review. Forensic Toxicol 34(1):12–40. https://doi.org/10.1007/s11419-015-0294-5 [DOI: 10.1007/s11419-015-0294-5]
  83. Trindade F, Vitorino R, Leite-Moreira A, Falcão-Pires I (2019) Pericardial fluid: an underrated molecular library of heart conditions and a potential vehicle for cardiac therapy. Basic Res Cardiol 114(2):10. https://doi.org/10.1007/s00395-019-0716-3 [DOI: 10.1007/s00395-019-0716-3]
  84. Hastie TJ (1990) Generalized Additive Models (1 ed). Routledge, New York
  85. Vapnik VN (2000) The nature of statistical learning theory (2 ed). Springer, Berlin. https://doi.org/10.1007/978-1-4757-3264-1
  86. Sablone S, Bellino M, Cardinale AN, Esposito M, Sessa F, Salerno M (2024) Artificial intelligence in healthcare: an Italian perspective on ethical and medico-legal implications. Front Med 11:1343456. https://doi.org/10.3389/fmed.2024.1343456 [DOI: 10.3389/fmed.2024.1343456]
  87. Maiolo L, Maita F, Del Rio De Vicente JI, Lucarini I, Strisciullo G, Sablone S, Liscio A, Petrone G, Mussi V (2023) Silver-coated ZnO disordered nanostructures as low-cost and label-free Raman biosensing platform for fast detection of complex organic profiles. Biosensors and Bioelectronics: X. 13, 100309 https://doi.org/10.1016/j.biosx.2023.100309

Word Cloud

Created with Highcharts 10.0.0HxintervalPMIconcentrationpost-mortemdeathhypoxanthineestimationforensicnewtimehumanchangesVHsystematicreviewroleresultssamplemethodologiesThanatochemistryPost-mortemutmostimportancepathologistsdueimplicationmedico-legalevaluationsResearchlastthirtyyearssoughtmethodsestimatingparticularlyfocusedbiomarkerswhoseAlthoughstudiesbasedpotassiumKconcentrationsbloodvitreoushumorshowngreatpromiseassessingFollowingPRISMAguidelinesaddressesPICOquestion:"Incadaversanalyticaltechniquescurrentlyusedestimation?"Twenty-fourpapersretrievedindicatecanestimatedvariousbiofluidscommonlyaccountedFurthermoredifferentpre-analyticalproceduresresortedpreparationseveralutilizeddetectrelationshipso-obtainedlevelsexpressedquantitivelyregressionscorrelationcoefficientssemi-quantitativelynuclearmagneticresonancespectraaccuracyimprovessignificantlyadditionalfactorsconsideredambientrectaltemperatureureabodyweightcauseprovidingflexibleregressionmodelsappliedDespitepromisingpotentialmanylimitationsremainNotablyheterogeneityselectionpre-analytical/analyticalphasesleadsinconsistentThusmuchdonelayproceduralstandardsoptimizebiochemistryutilizationPMI-relatedinvestigationsestimation:literatureBiofluidsForensicpathologyHypoxanthinebiochemicalmarkers

Similar Articles

Cited By