Universal in situ oxide-based ABX-structured seeds for templating halide perovskite growth in All-perovskite tandems.

Weiqing Chen, Shun Zhou, Hongsen Cui, Weiwei Meng, Hongling Guan, Guojun Zeng, Yansong Ge, Sengke Cheng, Zixi Yu, Dexin Pu, Lishuai Huang, Jin Zhou, Guoyi Chen, Guang Li, Hongyi Fang, Zhiqiu Yu, Hai Zhou, Guojia Fang, Weijun Ke
Author Information
  1. Weiqing Chen: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  2. Shun Zhou: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  3. Hongsen Cui: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  4. Weiwei Meng: South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China. ORCID
  5. Hongling Guan: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  6. Guojun Zeng: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  7. Yansong Ge: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  8. Sengke Cheng: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  9. Zixi Yu: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  10. Dexin Pu: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  11. Lishuai Huang: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  12. Jin Zhou: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  13. Guoyi Chen: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China. ORCID
  14. Guang Li: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  15. Hongyi Fang: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  16. Zhiqiu Yu: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China.
  17. Hai Zhou: International School of Microelectronics, Dongguan University of Technology, Dongguan, Guangdong, China. ORCID
  18. Guojia Fang: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China. ORCID
  19. Weijun Ke: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, China. weijun.ke@whu.edu.cn. ORCID

Abstract

Precise control over halide perovskite crystallization is pivotal for realizing efficient solar cells. Here, we introduce a strategy utilizing in-situ-formed oxide-based ABX-structured seeds to regulate perovskite crystallization and growth. Introducing potassium stannate into perovskite precursors triggers a spontaneous reaction with lead iodide, producing potassium iodide and lead stannate. Potassium iodide effectively passivates defects, while PbSnO (ABX-structured), exhibiting a 98% lattice match, acts as a template and seed. This approach facilitates pre-nucleation cluster formation, preferential grain orientation, and the elimination of intermediate-phase processes in perovskite films. Incorporating potassium stannate into both the perovskite precursors and the buried hole transport layers enables single-junction 1.25 eV-bandgap Sn-Pb perovskite solar cells to achieve a steady-state efficiency of 23.12% and enhanced stability. Furthermore, all-perovskite tandem devices yield efficiencies of 28.12% (two-terminal) and 28.81% (four-terminal). This versatile templating method also boosts the performance of 1.77 eV and 1.54 eV-bandgap cells, underscoring its broad applicability.

References

  1. Adv Mater. 2024 Sep;36(39):e2405860 [PMID: 39108194]
  2. Chem Soc Rev. 2019 Apr 1;48(7):2011-2038 [PMID: 30604792]
  3. Adv Mater. 2022 Dec;34(50):e2204380 [PMID: 36103603]
  4. Nat Mater. 2014 Sep;13(9):897-903 [PMID: 24997740]
  5. Sci Adv. 2022 Nov 25;8(47):eadd0377 [PMID: 36427306]
  6. Science. 2021 Jun 18;372(6548):1327-1332 [PMID: 34140385]
  7. Mater Horiz. 2023 Jan 3;10(1):13-40 [PMID: 36415914]
  8. Adv Mater. 2022 Sep;34(36):e2204366 [PMID: 35867885]
  9. Science. 2022 Jul 29;377(6605):531-534 [PMID: 35901131]
  10. Nat Commun. 2025 Jan 2;16(1):190 [PMID: 39747020]
  11. Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 [PMID: 9976227]
  12. Chem Rev. 2020 Aug 12;120(15):7867-7918 [PMID: 32786671]
  13. Adv Mater. 2020 Dec;32(51):e2002228 [PMID: 32909335]
  14. Nature. 2023 Aug;620(7976):994-1000 [PMID: 37290482]
  15. Adv Mater. 2024 Sep;36(36):e2405470 [PMID: 39021268]
  16. J Am Chem Soc. 2017 Jun 7;139(22):7504-7512 [PMID: 28504518]
  17. Adv Mater. 2024 May;36(18):e2312170 [PMID: 38245819]
  18. Nature. 2023 Aug;620(7973):323-327 [PMID: 37344595]
  19. Nature. 2024 Aug;632(8025):536-542 [PMID: 38925147]
  20. J Am Chem Soc. 2009 May 6;131(17):6050-1 [PMID: 19366264]
  21. Nano Lett. 2022 Sep 28;22(18):7545-7553 [PMID: 36083803]
  22. Nat Commun. 2024 Jun 28;15(1):5484 [PMID: 38942769]
  23. Adv Mater. 2024 Sep;36(36):e2401698 [PMID: 39075821]
  24. Science. 2024 Feb 23;383(6685):855-859 [PMID: 38386724]
  25. Nature. 2023 Dec;624(7990):69-73 [PMID: 37938775]
  26. Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 [PMID: 10004490]
  27. Adv Mater. 2023 Sep;35(39):e2303674 [PMID: 37325993]
  28. Nature. 2023 Nov;623(7987):531-537 [PMID: 37853122]
  29. Angew Chem Int Ed Engl. 2023 May 22;62(22):e202302342 [PMID: 37000423]
  30. ACS Appl Mater Interfaces. 2023 Jul 26;15(29):34862-34873 [PMID: 37443450]
  31. ChemSusChem. 2023 Apr 21;16(8):e202202109 [PMID: 36624051]
  32. J Chem Phys. 2010 Apr 21;132(15):154104 [PMID: 20423165]
  33. Adv Mater. 2023 Sep;35(36):e2303061 [PMID: 37235878]
  34. Nanomicro Lett. 2022 Aug 16;14(1):165 [PMID: 35974239]
  35. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 [PMID: 9984901]
  36. Science. 2018 Sep 21;361(6408): [PMID: 30237326]
  37. J Am Chem Soc. 2015 Sep 9;137(35):11445-52 [PMID: 26313318]
  38. ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10822-10836 [PMID: 33629583]
  39. Nat Commun. 2024 Mar 14;15(1):2324 [PMID: 38485961]
  40. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 [PMID: 10062328]
  41. Adv Mater. 2018 May;30(22):e1706924 [PMID: 29667243]

Grants

  1. 12174290/National Natural Science Foundation of China (National Science Foundation of China)
  2. 210972127/National Natural Science Foundation of China (National Science Foundation of China)

Word Cloud

Created with Highcharts 10.0.0perovskitecellsABX-structuredpotassiumstannateiodide1halidecrystallizationsolaroxide-basedseedsgrowthprecursorsleadeV-bandgap12%28templatingPrecisecontrolpivotalrealizingefficientintroducestrategyutilizingin-situ-formedregulateIntroducingtriggersspontaneousreactionproducingPotassiumeffectivelypassivatesdefectsPbSnOexhibiting98%latticematchactstemplateseedapproachfacilitatespre-nucleationclusterformationpreferentialgrainorientationeliminationintermediate-phaseprocessesfilmsIncorporatingburiedholetransportlayersenablessingle-junction25Sn-Pbachievesteady-stateefficiency23enhancedstabilityFurthermoreall-perovskitetandemdevicesyieldefficienciestwo-terminal81%four-terminalversatilemethodalsoboostsperformance77 eV54underscoringbroadapplicabilityUniversalsituAll-perovskitetandems

Similar Articles

Cited By