Mechanistic home range capture-recapture models for the estimation of population density and landscape connectivity.

Keita Fukasawa, Daishi Higashide
Author Information
  1. Keita Fukasawa: Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan. ORCID
  2. Daishi Higashide: Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan.

Abstract

Spatial capture-recapture models (SCRs) provide an integrative statistical tool for analyzing animal movement and population patterns. Although incorporating home range formation with a theoretical basis of animal movement into SCRs can improve the prediction of animal space use in a heterogeneous landscape, this approach is challenging owing to the sparseness of recapture events. In this study, we developed an advection-diffusion capture-recapture model (ADCR), which is an extension of SCRs incorporating home range formation with advection-diffusion formalism, providing a new framework to estimate population density and landscape permeability. we tested the unbiasedness of the estimator using simulated capture-recapture data generated by a step selection function. We also compared the accuracy of population density estimates and home range shapes with those from SCR incorporating the least-cost path and basic SCR. In addition, ADCR was applied to a real dataset of Asiatic black bear (Ursus thibetanus) in Japan to demonstrate the capacity of the ADCR to detect geographical barriers that constrain animal movements. Population density and permeability of ADCR were substantially unbiased for simulated datasets. ADCR could detect environmental signals on connectivity more sensitively and could estimate population density, home range shapes, and size variations better than the existing models. For the application to the bear dataset, ADCR could detect the effect of water bodies as a barrier to movement, which is consistent with previous studies, whereas estimates by SCR with the least-cost path were difficult to interpret. ADCR provides unique opportunities to elucidate both individual- and population-level ecological processes from capture-recapture data. By offering a formal link with step selection functions to estimate animal movement, it is suitable for simultaneously modeling capture-recapture data and animal movement data. This study provides a basis for studies of the interplay between animal movement processes and population patterns.

Keywords

References

  1. Ecology. 2008 Oct;89(10):2712-24 [PMID: 18959309]
  2. Ecol Appl. 2016 Jun;26(4):1125-35 [PMID: 27509753]
  3. Ecology. 2010 Nov;91(11):3376-83 [PMID: 21141198]
  4. Ecology. 2019 Feb;100(2):e02580 [PMID: 30601582]
  5. Mol Ecol Resour. 2022 Jan;22(1):56-65 [PMID: 34146448]
  6. PLoS One. 2015 Apr 21;10(4):e0122947 [PMID: 25898019]
  7. Ecology. 2008 Feb;89(2):542-54 [PMID: 18409443]
  8. J Anim Ecol. 2016 Jan;85(1):32-42 [PMID: 25950737]
  9. Mov Ecol. 2019 May 21;7:16 [PMID: 31139416]
  10. Ecol Evol. 2019 Apr 05;9(8):4958-4968 [PMID: 31031957]
  11. Ecology. 2022 Oct;103(10):e3473 [PMID: 34270790]
  12. Biometrics. 2008 Jun;64(2):377-85 [PMID: 17970815]
  13. Ecology. 2014 May;95(5):1341-8 [PMID: 25000765]
  14. PLoS One. 2014 Jan 23;9(1):e86181 [PMID: 24465947]
  15. Ecology. 2025 Feb;106(2):e70046 [PMID: 39989236]
  16. Ecology. 2013 Feb;94(2):287-94 [PMID: 23691647]
  17. Evolution. 2006 Aug;60(8):1551-61 [PMID: 17017056]
  18. Ecology. 2022 Oct;103(10):e3544 [PMID: 34626121]
  19. Mov Ecol. 2014 Feb 07;2(1):4 [PMID: 25520815]
  20. Ecology. 2022 Oct;103(10):e3676 [PMID: 35253209]
  21. PLoS One. 2017 Mar 28;12(3):e0174212 [PMID: 28350863]
  22. Conserv Biol. 2019 Apr;33(2):239-249 [PMID: 30311266]
  23. PLoS One. 2014 Apr 22;9(4):e95693 [PMID: 24756026]
  24. J Anim Ecol. 2016 Jan;85(1):43-53 [PMID: 25056207]
  25. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2201-11 [PMID: 20566497]
  26. Ecol Evol. 2018 Dec 15;9(1):318-327 [PMID: 30680116]
  27. Ecology. 2008 Apr;89(4):1112-9 [PMID: 18481535]
  28. Ecology. 2009 Nov;90(11):3233-44 [PMID: 19967878]
  29. J Theor Biol. 2017 Mar 7;416:52-67 [PMID: 28063843]

Grants

  1. JPMEERF20194005/Environmental Restoration and Conservation Agency (Environment Research and Technology Development Fund)
  2. JP25450220/Japan Society for the Promotion of Science (KAKENHI)
  3. JP19K12425/Japan Society for the Promotion of Science (KAKENHI)

MeSH Term

Animals
Population Density
Models, Biological
Ursidae
Ecosystem
Homing Behavior
Computer Simulation

Word Cloud

Created with Highcharts 10.0.0animalADCRcapture-recapturemovementpopulationhomerangedensitylandscapedatamodelsSCRsincorporatingestimatestepselectionSCRdetectpatternsformationbasisstudyadvection-diffusionpermeabilitysimulatedfunctionestimatesshapesleast-costpathdatasetbearconnectivitystudiesprovidesprocessesestimationequationSpatialprovideintegrativestatisticaltoolanalyzingAlthoughtheoreticalcanimprovepredictionspaceuseheterogeneousapproachchallengingowingsparsenessrecaptureeventsdevelopedmodelextensionformalismprovidingnewframeworktestedunbiasednessestimatorusinggeneratedalsocomparedaccuracybasicadditionappliedrealAsiaticblackUrsusthibetanusJapandemonstratecapacitygeographicalbarriersconstrainmovementsPopulationsubstantiallyunbiaseddatasetsenvironmentalsignalssensitivelysizevariationsbetterexistingapplicationeffectwaterbodiesbarrierconsistentpreviouswhereasdifficultinterpretuniqueopportunitieselucidateindividual-population-levelecologicalofferingformallinkfunctionssuitablesimultaneouslymodelinginterplayMechanisticabundanceadvection–diffusioncircuittheoryresistancemechanisticanalysispartialdifferentialspatialcapture–recapture

Similar Articles

Cited By (1)