Crystal Structure and Catalytic Mechanism of Drimenol Synthase, a Bifunctional Terpene Cyclase-Phosphatase.

Kristin R Osika, Matthew N Gaynes, David W Christianson
Author Information
  1. Kristin R Osika: Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323 United States. ORCID
  2. Matthew N Gaynes: Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323 United States. ORCID
  3. David W Christianson: Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323 United States. ORCID

Abstract

Drimenol synthase from (AsDMS) is a highly unusual bifunctional sesquiterpene synthase that integrates two distinct, sequential isoprenoid processing activities within a single polypeptide chain. AsDMS catalyzes the class II cyclization of farnesyl diphosphate (FPP) to form drimenyl diphosphate, which then undergoes enzyme-catalyzed hydrolysis to yield drimenol, a bioactive sesquiterpene alcohol with antifungal and anticancer properties. Here, we report the X-ray crystal structures of AsDMS and its complex with a sesquiterpene thiol, which are the first of a terpene cyclase-phosphatase. The AsDMS structure exhibits a two-domain architecture consisting of a terpene cyclase β domain and a haloacid dehalogenase (HAD)-like phosphatase domain, with two distinct active sites located on opposite sides of the protein. Mechanistic studies show that dephosphorylation of the drimenyl diphosphate intermediate proceeds through stepwise hydrolysis, such that two equivalents of inorganic phosphate rather than inorganic pyrophosphate are co-products of the reaction sequence. When the AsDMS reaction is performed in H O, O is not incorporated into drimenol, indicating that the hydroxyl oxygen of drimenol originates from the prenyl oxygen of FPP rather than bulk water. These results correct a mechanistic proposal previously advanced by another group. Surprisingly, AsDMS exhibits unprecedented substrate promiscuity, catalyzing the conversion of substrate mimic farnesyl--thiolodiphosphate into cyclic and linear sesquiterpene products. Structural and mechanistic insights gained from AsDMS expand the functional diversity of terpene biosynthetic enzymes and provide a foundation for engineering "designer cyclases" capable of generating new terpenoid products.

References

  1. Nat Prod Rep. 2024 Mar 20;41(3):402-433 [PMID: 38105714]
  2. Curr Opin Plant Biol. 2006 Jun;9(3):297-304 [PMID: 16600670]
  3. Acta Crystallogr D Biol Crystallogr. 2014 Sep;70(Pt 9):2430-43 [PMID: 25195756]
  4. J Biol Chem. 2015 Jul 24;290(30):18678-98 [PMID: 26071590]
  5. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [PMID: 20057044]
  6. J Biol Chem. 1996 Sep 20;271(38):23262-8 [PMID: 8798524]
  7. Chem Rev. 2006 Aug;106(8):3412-42 [PMID: 16895335]
  8. Plants (Basel). 2024 Sep 05;13(17): [PMID: 39273976]
  9. Nucleic Acids Res. 1995 Aug 11;23(15):2886-92 [PMID: 7659511]
  10. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [PMID: 20124692]
  11. J Am Chem Soc. 2022 Dec 7;144(48):22067-22074 [PMID: 36416740]
  12. Biochem Biophys Res Commun. 2006 Mar 3;341(1):254-60 [PMID: 16414022]
  13. Curr Opin Struct Biol. 2009 Dec;19(6):658-65 [PMID: 19889535]
  14. J Biol Chem. 2012 Feb 24;287(9):6840-50 [PMID: 22219188]
  15. J Mol Biol. 2006 Sep 1;361(5):1003-34 [PMID: 16889794]
  16. Nat Chem. 2020 Oct;12(10):968-972 [PMID: 32778689]
  17. ACS Catal. 2023 Sep 15;13(19):12774-12802 [PMID: 37822860]
  18. Biochemistry. 2004 Mar 16;43(10):2812-20 [PMID: 15005616]
  19. Structure. 1998 Feb 15;6(2):127-33 [PMID: 9519404]
  20. Pest Manag Sci. 2018 Jul;74(7):1623-1629 [PMID: 29316155]
  21. Curr Opin Struct Biol. 2016 Dec;41:27-37 [PMID: 27285057]
  22. Trends Biochem Sci. 2004 Sep;29(9):495-503 [PMID: 15337123]
  23. Biochim Biophys Acta. 2014 Jan;1840(1):184-90 [PMID: 24036329]
  24. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  25. Biochemistry. 2010 Mar 2;49(8):1787-97 [PMID: 20131801]
  26. Nat Chem Biol. 2011 May 22;7(7):431-3 [PMID: 21602811]
  27. Curr Opin Chem Biol. 1997 Dec;1(4):570-8 [PMID: 9667899]
  28. J Mol Biol. 2007 Sep 21;372(3):774-97 [PMID: 17681537]
  29. Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2408064121 [PMID: 39365814]
  30. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):E1974-83 [PMID: 25848029]
  31. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
  32. Biochemistry. 2004 Apr 27;43(16):4716-23 [PMID: 15096040]
  33. Nat Prod Rep. 2014 Oct;31(10):1449-73 [PMID: 25171145]
  34. Chem Rev. 2017 Sep 13;117(17):11570-11648 [PMID: 28841019]
  35. Science. 1997 Sep 19;277(5333):1811-5 [PMID: 9295270]
  36. ACS Chem Biol. 2016 Apr 15;11(4):889-99 [PMID: 26734760]
  37. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [PMID: 20124702]
  38. Acc Chem Res. 2021 Oct 19;54(20):3780-3791 [PMID: 34254507]
  39. Nat Commun. 2021 Jun 9;12(1):3487 [PMID: 34108468]
  40. Phytochemistry. 2009 Oct-Nov;70(15-16):1621-37 [PMID: 19793600]
  41. Biochemistry. 2022 Nov 1;61(21):2417-2430 [PMID: 36227241]
  42. Nucleic Acids Res. 2022 Jul 5;50(W1):W210-W215 [PMID: 35610055]
  43. Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14 [PMID: 23793146]
  44. Biochemistry. 2017 Apr 11;56(14):2010-2023 [PMID: 28362483]
  45. ACS Chem Biol. 2022 May 20;17(5):1226-1238 [PMID: 35446557]
  46. Angew Chem Int Ed Engl. 2012 Jan 27;51(5):1124-37 [PMID: 22105807]
  47. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3084-8 [PMID: 17360612]
  48. Acc Chem Res. 2012 Mar 20;45(3):463-72 [PMID: 22039990]
  49. Planta. 2019 Jan;249(1):1-8 [PMID: 30467631]
  50. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [PMID: 19461840]
  51. Curr Opin Struct Biol. 2016 Dec;41:172-179 [PMID: 27526404]
  52. J Am Chem Soc. 2001 Sep 19;123(37):8974-8 [PMID: 11552804]

Grants

  1. P30 GM133893/NIGMS NIH HHS
  2. R01 GM056838/NIGMS NIH HHS
  3. T32 GM133398/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0AsDMSsesquiterpenetwodiphosphatedrimenolterpeneDrimenolsynthasedistinctFPPdrimenylhydrolysisexhibitsdomaininorganicratherreactionOoxygenmechanisticsubstrateproductshighlyunusualbifunctionalintegratessequentialisoprenoidprocessingactivitieswithinsinglepolypeptidechaincatalyzesclassIIcyclizationfarnesylformundergoesenzyme-catalyzedyieldbioactivealcoholantifungalanticancerpropertiesreportX-raycrystalstructurescomplexthiolfirstcyclase-phosphatasestructuretwo-domainarchitectureconsistingcyclaseβhaloaciddehalogenaseHAD-likephosphataseactivesiteslocatedoppositesidesproteinMechanisticstudiesshowdephosphorylationintermediateproceedsstepwiseequivalentsphosphatepyrophosphateco-productssequenceperformedHincorporatedindicatinghydroxyloriginatesprenylbulkwaterresultscorrectproposalpreviouslyadvancedanothergroupSurprisinglyunprecedentedpromiscuitycatalyzingconversionmimicfarnesyl--thiolodiphosphatecycliclinearStructuralinsightsgainedexpandfunctionaldiversitybiosyntheticenzymesprovidefoundationengineering"designercyclases"capablegeneratingnewterpenoidCrystalStructureCatalyticMechanismSynthaseBifunctionalTerpeneCyclase-Phosphatase

Similar Articles

Cited By