Distinct phytoplankton size classes respond differently to biotic and abiotic factors.

Stefanie Eyring, Ewa Merz, Marta Reyes, Pinelopi Ntetsika, Stuart R Dennis, Peter D F Isles, Sreenath Kyathanahally, Marco Baity-Jesi, Sze-Wing To, Agostino Merico, Francesco Pomati
Author Information
  1. Stefanie Eyring: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 D��bendorf, Switzerland.
  2. Ewa Merz: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 D��bendorf, Switzerland.
  3. Marta Reyes: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 D��bendorf, Switzerland.
  4. Pinelopi Ntetsika: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 D��bendorf, Switzerland.
  5. Stuart R Dennis: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 D��bendorf, Switzerland.
  6. Peter D F Isles: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 D��bendorf, Switzerland.
  7. Sreenath Kyathanahally: Department of Systems Analysis, Integrated Assessment and Modelling, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 D��bendorf, Switzerland.
  8. Marco Baity-Jesi: Department of Systems Analysis, Integrated Assessment and Modelling, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 D��bendorf, Switzerland.
  9. Sze-Wing To: Systems Ecology Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstra��e 6, 28359 Bremen, Germany.
  10. Agostino Merico: Systems Ecology Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstra��e 6, 28359 Bremen, Germany.
  11. Francesco Pomati: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 D��bendorf, Switzerland.

Abstract

The interplay between abiotic (resource supply, temperature) and biotic (grazing) factors determines growth and loss processes in phytoplankton through resource competition and trophic interactions, which are mediated by morphological traits like size. Here, we study the relative importance of grazers, water physics, and chemistry on the daily net accumulation rates (ARs) of individual phytoplankton from natural communities, grouped into six size classes from circa 10 to 500 ��m. Using a Random Forest modelling approach and 4 years of daily data from a lake, we find that water temperature is generally a pivotal control of all phytoplankton ARs. At the same time, nutrients and light are important for the smallest and the largest classes. Mesozooplankton abundance is a key predictor of the AR for small phytoplankton, with microzooplankton being important for the middle-size range. In our data, large and small phytoplankton have different (seasonal) blooming patterns: small forms are favoured by low temperature and grazing, and high phosphorus levels. Larger forms show positive ARs at high temperatures and low phosphorus (being relatively insensitive to zooplankton grazing). These results help us understand the opportunities and limitations of using size to explain and model phytoplankton responses to biotic and abiotic environmental change.

Keywords

References

  1. Nat Methods. 2018 Apr;15(4):233-234 [PMID: 30100822]
  2. Nat Commun. 2020 Oct 23;11(1):5364 [PMID: 33097697]
  3. Ecol Lett. 2009 Aug;12(8):744-57 [PMID: 19580586]
  4. Science. 2016 Aug 26;353(6302):922-5 [PMID: 27563095]
  5. Proc Biol Sci. 2018 May 30;285(1879): [PMID: 29794050]
  6. Science. 2024 Feb 16;383(6684):777-782 [PMID: 38359116]
  7. Ecol Lett. 2018 May;21(5):619-628 [PMID: 29527797]
  8. Ecol Lett. 2023 Mar;26(3):470-481 [PMID: 36707927]
  9. Front Microbiol. 2020 Jan 22;10:3155 [PMID: 32038586]
  10. Ann Rev Mar Sci. 2015;7:241-64 [PMID: 25062405]
  11. ISME Commun. 2021 Oct 6;1(1):52 [PMID: 36750580]
  12. Microbiol Mol Biol Rev. 2012 Dec;76(4):792-812 [PMID: 23204367]
  13. Ecol Lett. 2020 Aug;23(8):1287-1297 [PMID: 32476249]
  14. Ann Rev Mar Sci. 2024 Jan 17;16:513-536 [PMID: 37625127]
  15. Science. 2015 May 22;348(6237):1262073 [PMID: 25999517]
  16. Glob Chang Biol. 2018 Jan;24(1):55-77 [PMID: 28787760]
  17. Limnol Oceanogr. 2022 Aug;67(8):1647-1669 [PMID: 36247386]
  18. Front Microbiol. 2014 Jul 01;5:324 [PMID: 25071737]
  19. Proc Biol Sci. 2006 Jan 7;273(1582):1-9 [PMID: 16519227]
  20. Ecol Lett. 2021 Apr;24(4):847-861 [PMID: 33471443]
  21. Glob Chang Biol. 2020 May;26(5):2756-2784 [PMID: 32133744]
  22. Nat Rev Microbiol. 2018 Aug;16(8):471-483 [PMID: 29946124]
  23. J Theor Biol. 2010 Mar 7;263(1):120-33 [PMID: 19896955]
  24. Environ Sci Technol. 2011 Nov 15;45(22):9658-65 [PMID: 21981777]
  25. Science. 2004 Jul 16;305(5682):354-60 [PMID: 15256663]
  26. Front Microbiol. 2021 Nov 15;12:746297 [PMID: 34867861]
  27. Harmful Algae. 2016 Apr;54:128-144 [PMID: 28073472]
  28. Oecologia. 2002 Aug;132(4):492-500 [PMID: 28547634]
  29. Water Res. 2021 Sep 15;203:117524 [PMID: 34418642]
  30. Ann Rev Mar Sci. 2016;8:217-41 [PMID: 26163011]
  31. Proc Biol Sci. 2022 Jun 29;289(1977):20220393 [PMID: 35730156]
  32. Nat Ecol Evol. 2022 Aug;6(8):1105-1111 [PMID: 35760889]
  33. Nat Clim Chang. 2023;13(4):389-396 [PMID: 37038592]

Word Cloud

Created with Highcharts 10.0.0phytoplanktonsizeabiotictemperaturebioticgrazingARsclassessmallresourcefactorsgrowthtraitswaterdailydataimportantformslowhighphosphorusinterplaysupplydetermineslossprocessescompetitiontrophicinteractionsmediatedmorphologicallikestudyrelativeimportancegrazersphysicschemistrynetaccumulationratesindividualnaturalcommunitiesgroupedsixcirca10500 ��mUsingRandomForestmodellingapproach4yearslakefindgenerallypivotalcontroltimenutrientslightsmallestlargestMesozooplanktonabundancekeypredictorARmicrozooplanktonmiddle-sizerangelargedifferentseasonalbloomingpatterns:favouredlevelsLargershowpositivetemperaturesrelativelyinsensitivezooplanktonresultshelpusunderstandopportunitieslimitationsusingexplainmodelresponsesenvironmentalchangeDistinctresponddifferentlycommunitydynamicsratein-situimagingmachinelearningplankton

Similar Articles

Cited By

No available data.