Artificial Intelligence in Diagnosing Depression Through Behavioural Cues: A Diagnostic Accuracy Systematic Review and Meta-Analysis.

Yee Shyan Goh, Qi Rui See, Nopporn Vongsirimas, Piyanee Klanin-Yobas
Author Information
  1. Yee Shyan Goh: Alice Lee Centre for Nursing Studies, National University of Singapore, Singapore, Singapore.
  2. Qi Rui See: Department of Biological Sciences, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
  3. Nopporn Vongsirimas: Faculty of Nursing, Mahidol University, Salaya, Nakhon Pathom, Thailand.
  4. Piyanee Klanin-Yobas: Alice Lee Centre for Nursing Studies, National University of Singapore, Singapore, Singapore. ORCID

Abstract

AIM: To synthesise existing evidence concerning the application of AI methods in detecting depression through behavioural cues among adults in healthcare and community settings.
DESIGN: This is a diagnostic accuracy systematic review.
METHODS: This review included studies examining different AI methods in detecting depression among adults. Two independent reviewers screened, appraised and extracted data. Data were analysed by meta-analysis, narrative synthesis and subgroup analysis.
DATA SOURCES: Published studies and grey literature were sought in 11 electronic databases. Hand search was conducted on reference lists and two journals.
RESULTS: In total, 30 studies were included in this review. Twenty of which demonstrated that AI models had the potential to detect depression. Speech and facial expression showed better sensitivity, reflecting the ability to detect people with depression. Text and movement had better specificity, indicating the ability to rule out non-depressed individuals. Heterogeneity was initially high. Less heterogeneity was observed within each modality subgroup.
CONCLUSIONS: This is the first systematic review examining AI models in detecting depression using all four behavioural cues: speech, texts, movement and facial expressions.
IMPLICATIONS: A collaborative effort among healthcare professionals can be initiated to develop an AI-assisted depression detection system in general healthcare or community settings.
IMPACT: It is challenging for general healthcare professionals to detect depressive symptoms among people in non-psychiatric settings. Our findings suggested the need for objective screening tools, such as an AI-assisted system, for screening depression. Therefore, people could receive accurate diagnosis and proper treatments for depression.
REPORTING METHOD: This review followed the PRISMA checklist.
PATIENTS OR PUBLIC CONTRIBUTION: No patients or public contribution.

Keywords

References

  1. Alsharif, Z., S. Elhag, and S. Alfakeh. 2022. “Depression Detection in Arabic Using Speech Language Recognition.” In 2022 7th International Conference on Data Science and Machine Learning Applications (CDMA). IEEE. https://doi.org/10.1109/cdma54072.2022.00015.
  2. American Psychiatric Association. 2013. “Major Depressive Disorder.” In Diagnostic and Statistical Manual of Mental Disorders: DSM‐5, 5th ed., 160–168. American Psychiatric Publishing.
  3. American Psychological Association. 2019. Depression Assessment Instruments. American Psychological Association. https://www.apa.org/depression‐guideline/assessment.
  4. Ang, A. 2022. “Changi General Hospital Developing AI Algorithms to Predict Patient Deterioration.” Healthcare IT News. https://www.healthcareitnews.com/news/asia/changi‐general‐hospital‐developing‐ai‐algorithms‐predict‐patient‐deterioration.
  5. Avasthi, A., and A. Ghosh. 2014. “Depression in Primary Care: Challenges and Controversies.” Indian Journal of Medical Research 139, no. 2: 188–190.
  6. Ayyappan, V., and J. Coffin. 2024. Artificial Intelligence in Diagnosing Medical Conditions and Impact on Healthcare. Medical Group Management Association. https://www.mgma.com/articles/artificial‐intelligence‐in‐diagnosing‐medical‐conditions‐and‐impact‐on‐healthcare.
  7. Beck, A. T. 1967. Depression: Causes and Treatment. University of Pennsylvania Press.
  8. Beck, A. T., R. A. Steer, and G. Brown. 1996. “Beck Depression Inventory–II.” PsycTESTS Dataset. https://doi.org/10.1037/t00742‐000.
  9. Beck, A. T., C. H. Ward, M. Mendelson, J. Mock, and J. Erbaugh. 1961. “An Inventory for Measuring Depression.” Archives of General Psychiatry 4, no. 6: 561–571. https://doi.org/10.1001/archpsyc.1961.01710120031004.
  10. Bhadra, S., and C. J. Kumar. 2022. “An Insight Into Diagnosis of Depression Using Machine Learning Techniques: A Systematic Review.” Current Medical Research and Opinion 38, no. 5: 749–771. https://doi.org/10.1080/03007995.2022.2038487.
  11. Blackman, N. J. 2001. “Systematic Reviews of Evaluations of Diagnostic and Screening Tests. Odds Ratio is Not Independent of Prevalence.” BMJ 323, no. 7322: 1188.
  12. Bruce, D. F., and M. V. Durning. 2024. “Depression Diagnosis and Screening: What Doctors Look for.” WebMD. https://www.webmd.com/depression/depression‐diagnosis.
  13. Burkhardt, H., M. Pullmann, T. Hull, P. Aren, and T. Cohen. 2022. “Comparing Emotion Feature Extraction Approaches for Predicting Depression and Anxiety.” In Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology, 105–115. Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.clpsych‐1.9.
  14. Cai, H., X.‐M. Xie, Q. Zhang, et al. 2021. “Prevalence of Suicidality in Major Depressive Disorder: A Systematic Review and Meta‐Analysis of Comparative Studies.” Frontiers in Psychiatry 12: 690130. https://doi.org/10.3389/fpsyt.2021.690130.
  15. Campbell, J. M., M. Klugar, S. Ding, et al. 2020. “Chapter 9: Diagnostic Test Accuracy Systematic Reviews.” In JBI Manual for Evidence Synthesis. JBI. https://jbi‐global‐wiki.refined.site/space/MANUAL/4687355/Chapter+9%3A+Diagnostic+test+accuracy+systematic+reviews.
  16. Carrozzino, D., C. Patierno, G. A. Fava, and J. Guidi. 2020. “The Hamilton Rating Scales for Depression: A Critical Review of Clinimetric Properties of Different Versions.” Psychotherapy and Psychosomatics 89, no. 3: 133–150. https://doi.org/10.1159/000506879.
  17. Cohen, J. F., D. A. Korevaar, D. G. Altman, et al. 2016. “STARD 2015 Guidelines for Reporting Diagnostic Accuracy Studies: Explanation and Elaboration.” BMJ Open 6, no. 11: e012799. https://doi.org/10.1136/bmjopen‐2016‐012799.
  18. Das, A., U. R. Acharya, S. S. Panda, and S. Sabut. 2019. “Deep Learning Based Liver Cancer Detection Using Watershed Transform and Gaussian Mixture Model Techniques.” Cognitive Systems Research 54: 165–175. https://doi.org/10.1016/j.cogsys.2018.12.009.
  19. Davenport, T., and R. Kalakota. 2019. “The Potential for Artificial Intelligence in Healthcare.” Future Healthcare Journal 6, no. 2: 94–98. https://doi.org/10.7861/futurehosp.6‐2‐94.
  20. Demetriou, C., B. U. Ozer, and C. A. Essau. 2015. “Self‐Report Questionnaires.” In The Encyclopedia of Clinical Psychology, edited by R. Cautin and S. Lilienfeld, 1–6. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118625392.wbecp507.
  21. Dibeklioglu, H., Z. Hammal, and J. F. Cohn. 2018. “Dynamic Multimodal Measurement of Depression Severity Using Deep Autoencoding.” IEEE Journal of Biomedical and Health Informatics 22, no. 2: 525–536. https://doi.org/10.1109/jbhi.2017.2676878.
  22. Dibeklioğlu, H., Z. Hammal, Y. Yang, and J. F. Cohn. 2015. “Multimodal Detection of Depression in Clinical Interviews.” In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, 307–310. Association for Computing Machinery. https://doi.org/10.1145/2818346.2820776.
  23. Dinga, R., B. W. J. H. Penninx, D. J. Veltman, L. Schmaal, and A. F. Marquand. 2019. “Beyond Accuracy: Measures for Assessing Machine Learning Models, Pitfalls and Guidelines.” https://doi.org/10.1101/743138.
  24. Giannakopoulos, T., and A. Pikrakis. 2014. “4.3.2: Zero‐Crossing Rate.” In Introduction to Audio Analysis: A MATLAB Approach, 73–75. Elsevier, Academic Press.
  25. Gilman, S. E., E. Sucha, M. Kingsbury, N. J. Horton, J. M. Murphy, and I. Colman. 2017. “Depression and Mortality in a Longitudinal Study: 1952–2011.” Canadian Medical Association Journal 189, no. 42: E1304–E1310. https://doi.org/10.1503/cmaj.170125.
  26. Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning Book. MIT Press. https://www.deeplearningbook.org/.
  27. Gregersen, E. 2022. Computer Vision. Encyclopædia Britannica. https://www.britannica.com/technology/computer‐vision.
  28. Guo, W., H. Yang, Z. Liu, Y. Xu, and B. Hu. 2021. “Deep Neural Networks for Depression Recognition Based on 2D and 3D Facial Expressions Under Emotional Stimulus Tasks.” Frontiers in Neuroscience 15: 609760. https://doi.org/10.3389/fnins.2021.609760.
  29. Hamilton, M. 1960. “A Rating Scale for Depression.” Journal of Neurology, Neurosurgery and Psychiatry 23, no. 1: 56–62. https://doi.org/10.1136/jnnp.23.1.56.
  30. Han, M.‐M., X.‐Y. Li, X.‐Y. Yi, et al. 2024. “Automatic Recognition of Depression Based on Audio and Video: A Review.” World Journal of Psychiatry 14, no. 2: 225–233. https://doi.org/10.5498/wjp.v14.i2.225.
  31. Harati, A., E. Shriberg, T. Rutowski, P. Chlebek, Y. Lu, and R. Oliveira. 2021. “Speech‐Based Depression Prediction Using Encoder‐Weight‐Only Transfer Learning and a Large Corpus.” In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7273–7277. IEEE. https://doi.org/10.1109/icassp39728.2021.9414208.
  32. He, K., X. Zhang, S. Ren, and J. Sun. 2016. “Deep Residual Learning for Image Recognition.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. https://doi.org/10.1109/cvpr.2016.90.
  33. Hicks, S. A., I. Strümke, V. Thambawita, et al. 2022. “On Evaluation Metrics for Medical Applications of Artificial Intelligence.” Scientific Reports 12, no. 1: 5979. https://doi.org/10.1038/s41598‐022‐09954‐8.
  34. Hunt, M. G., J. Auriemma, and A. C. A. Cashaw. 2003. “Self‐Report Bias and Underreporting of Depression on the BDI–II.” Journal of Personality Assessment 80, no. 1: 26–30. https://doi.org/10.1207/S15327752JPA8001_10.
  35. JBI. 2020. Checklist for Systematic Reviews and Research Syntheses. JBI. https://jbi.global/critical‐appraisal‐tools.
  36. Jiang, H., B. Hu, Z. Liu, et al. 2018. “Detecting Depression Using an Ensemble Logistic Regression Model Based on Multiple Speech Features.” Computational and Mathematical Methods in Medicine 2018: 6508319. https://doi.org/10.1155/2018/6508319.
  37. Jiang, H., B. Hu, Z. Liu, et al. 2017. “Investigation of Different Speech Types and Emotions for Detecting Depression Using Different Classifiers.” Speech Communication 90: 39–46. https://doi.org/10.1016/j.specom.2017.04.001.
  38. Joshi, J., A. Dhall, R. Goecke, and J. F. Cohn. 2013. “Relative Body Parts Movement for Automatic Depression Analysis.” In 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, 492–497. IEEE. https://doi.org/10.1109/acii.2013.87.
  39. Kacem, A., Z. Hammal, M. Daoudi, and J. Cohn. 2018. “Detecting Depression Severity by Interpretable Representations of Motion Dynamics.” In 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018), 739–745. IEEE. https://doi.org/10.1109/fg.2018.00116.
  40. Koops, S., S. G. Brederoo, J. N. de Boer, F. G. Nadema, A. E. Voppel, and I. E. Sommer. 2023. “Speech as a Biomarker for Depression.” CNS and Neurological Disorders Drug Targets 22, no. 2: 152–160. https://doi.org/10.2174/1871527320666211213125847.
  41. Kroenke, K., T. W. Strine, R. L. Spitzer, J. B. W. Williams, J. T. Berry, and A. H. Mokdad. 2009. “The PHQ‐8 as a Measure of Current Depression in the General Population.” Journal of Affective Disorders 114, no. 173: 163. https://doi.org/10.1016/j.jad.2008.06.026.
  42. Kumar, D., D. J. Villarreal, and A. E. Meuret. 2021. “Walking on the Bright Side: Associations Between Affect, Depression, and Gait.” PLoS One 16, no. 12: e0260893. https://doi.org/10.1371/journal.pone.0260893.
  43. Kumar, Y., A. Koul, R. Singla, and M. F. Ijaz. 2022. “Artificial Intelligence in Disease Diagnosis: A Systematic Literature Review, Synthesizing Framework and Future Research Agenda.” Journal of Ambient Intelligence and Humanized Computing 14, no. 7: 8459–8486. https://doi.org/10.1007/s12652‐021‐03612‐z.
  44. Li, J., Z. Liu, Z. Ding, and G. Wang. 2018. “A Novel Study for MDD Detection Through Task‐Elicited Facial Cues.” In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1003–1008. IEEE. https://doi.org/10.1109/bibm.2018.8621236.
  45. Li, W., Q. Wang, X. Liu, and Y. Yu. 2021. “Simple Action for Depression Detection: Using Kinect‐Recorded Human Kinematic Skeletal Data.” BMC Psychiatry 21, no. 1: 205. https://doi.org/10.1186/s12888‐021‐03184‐4.
  46. Liu, D., X. L. Feng, F. Ahmed, M. Shahid, and J. Guo. 2022. “Detecting and Measuring Depression on Social Media Using a Machine Learning Approach: Systematic Review.” JMIR Mental Health 9, no. 3: e27244. https://doi.org/10.2196/27244.
  47. Liu, L., L. Liu, H. A. Wafa, F. Tydeman, W. Xie, and Y. Wang. 2024. “Diagnostic Accuracy of Deep Learning Using Speech Samples in Depression: A Systematic Review and Meta‐Analysis.” Journal of the American Medical Informatics Association 31, no. 10: 2394–2404. https://doi.org/10.1093/jamia/ocae189.
  48. Liu, Y., X. Lu, D. Shi, J. Yuan, T. Pan, and H. An. 2021. “Improved Depression Recognition Using Attention and Multitask Learning of Gender Recognition.” In 2021 International Conference on Asian Language Processing (IALP), 57–61. IEEE. https://doi.org/10.1109/ialp54817.2021.9675220.
  49. Liu, Z., B. Hu, F. Liu, et al. 2016. “Evaluation of Depression Severity in Speech.” In Brain Informatics and Health, 312–321. Springer. https://doi.org/10.1007/978‐3‐319‐47103‐7_31.
  50. Liu, Z., D. Wang, Z. J. Ding, and Q. Chen. 2021. “A Novel Bimodal Fusion‐Based Model For Depression Recognition.” In 2020 IEEE International Conference on E‐Health Networking, Application and Services (HEALTHCOM). IEEE. https://doi.org/10.1109/healthcom49281.2021.9399033.
  51. Long, H., Z. Guo, X. Wu, B. Hu, Z. Liu, and H. Cai. 2017. “Detecting Depression in Speech: Comparison and Combination Between Different Speech Types.” In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1052–1058. IEEE. https://doi.org/10.1109/bibm.2017.8217802.
  52. Low, D. M., K. H. Bentley, and S. S. Ghosh. 2019. “Automated Assessment of Psychiatric Disorders Using Speech: A Systematic Review.” https://doi.org/10.31219/osf.io/5pwze.
  53. Lu, X., D. Shi, Y. Liu, and J. Yuan. 2021. “Speech Depression Recognition Based on Attentional Residual Network.” Frontiers in Bioscience‐Landmark 26, no. 12: 1746–1759. https://doi.org/10.52586/5066.
  54. Macaskill, P., C. Gatonis, J. J. Deeks, R. M. Harbord, and Y. Takwoingi. 2010. “Chapter 10: Analysing and Presenting Results.” In Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 1.0, 1–61. Cochrane Collaboration. https://methods.cochrane.org/sdt/sites/methods.cochrane.org.sdt/files/uploads/Chapter%2010%20‐%20Version%201.0.pdf.
  55. Mandrekar, J. N. 2010. “Receiver Operating Characteristic Curve in Diagnostic Test Assessment.” Journal of Thoracic Oncology 5, no. 9: 1315–1316. https://doi.org/10.1097/jto.0b013e3181ec173d.
  56. Mao, K., Y. Wu, and J. Chen. 2023. “A Systematic Review on Automated Clinical Depression Diagnosis.” Npj Mental Health Research 2, no. 1: 20. https://doi.org/10.1038/s44184‐023‐00040‐z.
  57. Mayer, C. W., S. Ludwig, and S. Brandt. 2022. “Prompt Text Classifications With Transformer Models! An Exemplary Introduction to Prompt‐Based Learning With Large Language Models.” Journal of Research on Technology in Education 55, no. 1: 125–141. https://doi.org/10.1080/15391523.2022.2142872.
  58. McGowan, J., M. Sampson, D. M. Salzwedel, E. Cogo, V. Foerster, and C. Lefebvre. 2016. “Press Peer Review of Electronic Search Strategies: 2015 Guideline Statement.” Journal of Clinical Epidemiology 75: 40–46. https://doi.org/10.1016/j.jclinepi.2016.01.021.
  59. Memon, M. H., J. P. Li, A. U. Haq, M. H. Memon, and W. Zhou. 2019. “Breast Cancer Detection in the IOT Health Environment Using Modified Recursive Feature Selection.” Wireless Communications and Mobile Computing 2019: 1–19. https://doi.org/10.1155/2019/5176705.
  60. Miao, B., X. Liu, and T. Zhu. 2021. “Automatic Mental Health Identification Method Based on Natural Gait Pattern.” PsyCh Journal 10, no. 3: 453–464. https://doi.org/10.1002/pchj.434.
  61. Mintz, Y., and R. Brodie. 2019. “Introduction to Artificial Intelligence in Medicine.” Minimally Invasive Therapy & Allied Technologies 28, no. 2: 73–81. https://doi.org/10.1080/13645706.2019.1575882.
  62. Nasser, S. A., I. A. Hashim, and W. H. Ali. 2020. “A Review on Depression Detection and Diagnoses Based on Visual Facial Cues.” 2020 3rd International Conference on Engineering Technology and Its Applications (IICETA). https://doi.org/10.1109/iiceta50496.2020.9318860.
  63. Newell, E. E., S. K. McCoy, M. L. Newman, J. D. Wellman, and S. K. Gardner. 2017. “You Sound So Down: Capturing Depressed Affect Through Depressed Language.” Journal of Language and Social Psychology 37, no. 4: 451–474. https://doi.org/10.1177/0261927x17731123.
  64. Ng, C. W. M., C. H. How, and Y. P. Ng. 2016. “Major Depression in Primary Care: Making the Diagnosis.” Singapore Medical Journal 57, no. 11: 591–597. https://doi.org/10.11622/smedj.2016174.
  65. Oh, K., Y.‐C. Chung, K. W. Kim, W.‐S. Kim, and I.‐S. Oh. 2019. “Classification and Visualization of Alzheimer's Disease Using Volumetric Convolutional Neural Network and Transfer Learning.” Scientific Reports 9, no. 1: 18150. https://doi.org/10.1038/s41598‐019‐54548‐6.
  66. Page, M. J., J. E. McKenzie, P. M. Bossuyt, et al. 2021. “The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews.” BMJ 372: n71. https://doi.org/10.1136/bmj.n71.
  67. Pampouchidou, A., P. G. Simos, K. Marias, et al. 2017. “Automatic Assessment of Depression Based on Visual Cues: A Systematic Review.” IEEE Transactions on Affective Computing 10, no. 4: 445–470. https://doi.org/10.1109/TAFFC.2017.2724035.
  68. Punithavathi, R., M. Sharmila, T. Avudaiappan, I. I. Raj, S. Kanchana, and S. A. Mamo. 2022. “Empirical Investigation for Predicting Depression From Different Machine Learning Based Voice Recognition Techniques.” Evidence‐Based Complementary and Alternative Medicine 2023: 9801986. https://doi.org/10.1155/2022/6395860.
  69. Radloff, L. S. 1977. “The CES‐D Scale: A Self‐Report Depression Scale for Research in the General Population.” Applied Psychological Measurement 1, no. 3: 385–401. https://doi.org/10.1177/014662167700100306.
  70. Rao, S. K., and K. E. Manjunath. 2017. Speech Recognition Using Articulatory and Excitation Source Features. 1st ed. Springer International Publishing.
  71. Ricard, B. J., L. A. Marsch, B. Crosier, and S. Hassanpour. 2018. “Exploring the Utility of Community‐Generated Social Media Content for Detecting Depression: An Analytical Study on Instagram.” Journal of Medical Internet Research 20, no. 12: e11817. https://doi.org/10.2196/11817.
  72. Rice, F., L. Riglin, T. Lomax, et al. 2018. “Adolescent and Adult Differences in Major Depression Symptom Profiles.” Journal of Affective Disorders 243: 175–181.
  73. Richter, T., B. Fishbain, G. Richter‐Levin, and H. Okon‐Singer. 2021. “Machine Learning‐Based Behavioral Diagnostic Tools for Depression: Advances, Challenges, and Future Directions.” Journal of Personalized Medicine 11, no. 10: 957. https://doi.org/10.3390/jpm11100957.
  74. Salas‐Zárate, R., G. Alor‐Hernández, M. del Salas‐Zárate, M. A. Paredes‐Valverde, M. Bustos‐López, and J. L. Sánchez‐Cervantes. 2022. “Detecting Depression Signs on Social Media: A Systematic Literature Review.” Healthcare 10, no. 2: 291. https://doi.org/10.3390/healthcare10020291.
  75. Schünemann, H. J., J. P. Higgins, G. E. Vist, et al. 2022. “Chapter 14: Completing “Summary of Findings” Tables and Grading the Certainty of the Evidence.” In Cochrane Handbook for Systematic Reviews of Interventions Version 6.3. Cochrane Collaboration. https://training.cochrane.org/handbook/current/chapter‐14.
  76. Shangguan, Z., Z. Liu, G. Li, Q. Chen, Z. Ding, and B. Hu. 2023. “Dual‐Stream Multiple Instance Learning for Depression Detection With Facial Expression Videos.” IEEE Transactions on Neural Systems and Rehabilitation Engineering 31: 554–563. https://doi.org/10.1109/tnsre.2022.3204757.
  77. Shao, W., Z. You, L. Liang, et al. 2022. “A Multi‐Modal Gait Analysis‐Based Detection System of the Risk of Depression.” IEEE Journal of Biomedical and Health Informatics 26, no. 10: 4859–4868. https://doi.org/10.1109/jbhi.2021.3122299.
  78. Shen, J., C. J. P. Zhang, B. Jiang, et al. 2019. “Artificial Intelligence Versus Clinicians in Disease Diagnosis: Systematic Review.” JMIR Medical Informatics 7: e10010. https://pmc.ncbi.nlm.nih.gov/articles/PMC6716335/#:~:text=The%20results%20showed%20that%20the,of%20clinicians%20with%20less%20experience.
  79. Shi, D., X. Lu, Y. Liu, J. Yuan, T. Pan, and Y. Li. 2021. “Research on Depression Recognition Using Machine Learning From Speech.” In 2021 International Conference on Asian Language Processing (IALP), 52–56. IEEE. https://doi.org/10.1109/ialp54817.2021.9675271.
  80. Shin, D., K. Kim, S.‐B. Lee, et al. 2022. “Detection of Depression and Suicide Risk Based on Text From Clinical Interviews Using Machine Learning: Possibility of a New Objective Diagnostic Marker.” Frontiers in Psychiatry 13: 801301. https://doi.org/10.3389/fpsyt.2022.801301.
  81. Šimundić, A.‐M. 2009. “Measures of Diagnostic Accuracy: Basic Definitions.” Electronic journal of the International Federation of Clinical Chemistry and Laboratory Medicine 19, no. 4: 203–211. https://pmc.ncbi.nlm.nih.gov/articles/PMC4975285/.
  82. Smrke, U., I. Mlakar, S. Lin, B. Musil, and N. Plohl. 2021. “Language, Speech, and Facial Expression Features for Artificial Intelligence–Based Detection of Cancer survivors' Depression: Scoping Meta‐Review.” JMIR Mental Health 8, no. 12: e30439. https://doi.org/10.2196/30439.
  83. Spitzer, R. L., K. Kroenke, and J. B. W. Williams. 1999. “Validation and Utility of a Self‐Report Version of PRIME‐MD: The PHQ Primary Care Study.” Journal of the American Medical Association 282, no. 18: 1737–1744. https://doi.org/10.1001/jama.282.18.1737.
  84. Stolicyn, A., J. D. Steele, and P. Seriès. 2020. “Prediction of Depression Symptoms in Individual Subjects With Face and Eye Movement Tracking.” Psychological Medicine 52, no. 9: 1784–1792. https://doi.org/10.1017/s0033291720003608.
  85. Sun, Y., Z. Fu, Q. Bo, Z. Mao, X. Ma, and C. Wang. 2020. “The Reliability and Validity of PHQ‐9 in Patients With Major Depressive Disorder in Psychiatric Hospital.” BMC Psychiatry 20, no. 1: 474. https://doi.org/10.1186/s12888‐020‐02885‐6.
  86. Ting, S. L., W. H. Ip, and A. H. C. Tsang. 2011. “Is Naïve Bayes a Good Classifier for Document Classification?” International Journal of Software Engineering and Its Applications 5, no. 3: 37–46. https://www.researchgate.net/publication/266463703_Is_Naive_Bayes_a_Good_Classifier_for_Document_Classification.
  87. Uher, R., J. L. Payne, B. Pavlova, and R. H. Perlis. 2013. “Major Depressive Disorder in DSM‐5: Implications for Clinical Practice and Research of Changes From DSM‐IV.” Depression and Anxiety 31, no. 6: 459–471. https://doi.org/10.1002/da.22217.
  88. Wang, D., Y. Ding, Q. Zhao, P. Yang, S. Tan, and Y. Li. 2022. “ECAPA‐TDNN Based Depression Detection From Clinical Speech.” Interspeech 2022 86: 3333–3337. https://doi.org/10.21437/interspeech.2022‐10051.
  89. Wang, T., C. Li, C. Wu, et al. 2021. “A Gait Assessment Framework for Depression Detection Using Kinect Sensors.” IEEE Sensors Journal 21, no. 3: 3260–3270. https://doi.org/10.1109/jsen.2020.3022374.
  90. Wang, Y., X. Lu, and D. Shi. 2022. “MFCC‐Based Deep Convolutional Neural Network for Audio Depression Recognition.” In 2022 International Conference on Asian Language Processing (IALP), 162–166. IEEE. https://doi.org/10.1109/ialp57159.2022.9961267.
  91. Wang, Y.‐P., and C. Gorenstein. 2013. “Psychometric Properties of the Beck Depression Inventory‐II: A Comprehensive Review.” Revista Brasileira de Psiquiatria 35, no. 4: 416–431. https://doi.org/10.1590/1516‐4446‐2012‐1048.
  92. Weisenburger, R. L., M. C. Mullarkey, J. Labrada, et al. 2024. “Conversational Assessment Using Artificial Intelligence Is as Clinically Useful as Depression Scales and Preferred by Users.” Journal of Affective Disorders 351: 489–498. https://doi.org/10.1016/j.jad.2024.01.212.
  93. Wertzner, H. F., S. Schreiber, and L. Amaro. 2015. “Analysis of Fundamental Frequency, Jitter, Shimmer and Vocal Intensity in Children With Phonological Disorders.” Brazilian Journal of Otorhinolaryngology 71, no. 5: 582–588. https://doi.org/10.1016/s1808‐8694(15)31261‐1.
  94. Whiting, P. F., A. W. S. Rutjes, M. E. Westwood, et al. 2011. “QUADAS‐2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies.” Annals of Internal Medicine 155, no. 8: 529–536. https://doi.org/10.7326/0003‐4819‐155‐8‐201110180‐00009.
  95. World Health Organization. 2021. Depression. World Health Organization. https://www.who.int/news‐room/fact‐sheets/detail/depression.
  96. World Health Organization. 2023. Depressive disorder (depression). World Health Organization. https://www.who.int/news‐room/fact‐sheets/detail/depression.
  97. Ye, J., Y. Yu, Q. Wang, et al. 2021. “Multi‐Modal Depression Detection Based on Emotional Audio and Evaluation Text.” Journal of Affective Disorders 295: 904–913. https://doi.org/10.1016/j.jad.2021.08.090.
  98. Yu, Y., W. Li, Y. Zhao, et al. 2022. “Depression and Severity Detection Based on Body Kinematic Features: Using Kinect Recorded Skeleton Data of Simple Action.” Frontiers in Neurology 13: 905917. https://doi.org/10.3389/fneur.2022.905917.
  99. Zhao, N., Z. Zhang, Y. Wang, et al. 2019. “See Your Mental State From Your Walk: Recognizing Anxiety and Depression Through Kinect‐Recorded Gait Data.” PLoS One 14, no. 5: e0216591. https://doi.org/10.1371/journal.pone.0216591.
  100. Zung, W. W. 1965. “A Self‐Rating Depression Scale.” Archives of General Psychiatry 12, no. 1: 63–70. https://doi.org/10.1001/archpsyc.1965.01720310065008.

Word Cloud

Created with Highcharts 10.0.0depressionreviewAIamonghealthcaredetectingsettingsstudiesdetectfacialpeoplemovementmethodsbehaviouraladultscommunitysystematicincludedexaminingsubgroupmodelsbetterabilityspeechexpressionsprofessionalsAI-assistedsystemgeneralscreeningAIM:synthesiseexistingevidenceconcerningapplicationcuesDESIGN:diagnosticaccuracyMETHODS:differentTwoindependentreviewersscreenedappraisedextracteddataDataanalysedmeta-analysisnarrativesynthesisanalysisDATASOURCES:Publishedgreyliteraturesought11electronicdatabasesHandsearchconductedreferenceliststwojournalsRESULTS:total30TwentydemonstratedpotentialSpeechexpressionshowedsensitivityreflectingTextspecificityindicatingrulenon-depressedindividualsHeterogeneityinitiallyhighLessheterogeneityobservedwithinmodalityCONCLUSIONS:firstusingfourcues:textsIMPLICATIONS:collaborativeeffortcaninitiateddevelopdetectionIMPACT:challengingdepressivesymptomsnon-psychiatricfindingssuggestedneedobjectivetoolsThereforereceiveaccuratediagnosispropertreatmentsREPORTINGMETHOD:followedPRISMAchecklistPATIENTSORPUBLICCONTRIBUTION:patientspubliccontributionArtificialIntelligenceDiagnosingDepressionBehaviouralCues:DiagnosticAccuracySystematicReviewMeta-Analysisartificialintelligencemachinelearningtext

Similar Articles

Cited By