Artificial Intelligence in Peer Review: Enhancing Efficiency While Preserving Integrity.

Bohdana Doskaliuk, Olena Zimba, Marlen Yessirkepov, Iryna Klishch, Roman Yatsyshyn
Author Information
  1. Bohdana Doskaliuk: Department of Pathophysiology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine. doskaliuk_bo@ifnmu.edu.ua. ORCID
  2. Olena Zimba: Department of Rheumatology, Immunology and Internal Medicine, University Hospital in Kraków, Kraków, Poland. ORCID
  3. Marlen Yessirkepov: Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan. ORCID
  4. Iryna Klishch: Department of Pathophysiology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine. ORCID
  5. Roman Yatsyshyn: Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine. ORCID

Abstract

The rapid advancement of artificial intelligence (AI) has transformed various aspects of scientific research, including academic publishing and peer review. In recent years, AI tools such as large language models have demonstrated their capability to streamline numerous tasks traditionally handled by human editors and reviewers. These applications range from automated language and grammar checks to plagiarism detection, format compliance, and even preliminary assessment of research significance. While AI substantially benefits the efficiency and accuracy of academic processes, its integration raises critical ethical and methodological questions, particularly in peer review. AI lacks the subtle understanding of complex scientific content that human expertise provides, posing challenges in evaluating research novelty and significance. Additionally, there are risks associated with over-reliance on AI, potential biases in AI algorithms, and ethical concerns related to transparency, accountability, and data privacy. This review evaluates the perspectives within the scientific community on integrating AI in peer review and academic publishing. By exploring both AI's potential benefits and limitations, we aim to offer practical recommendations that ensure AI is used as a supportive tool, supporting but not replacing human expertise. Such guidelines are essential for preserving the integrity and quality of academic work while benefiting from AI's efficiencies in editorial processes.

Keywords

References

  1. Reumatologia. 2021;59(1):3-8 [PMID: 33707789]
  2. JAMA. 2023 Aug 22;330(8):702-703 [PMID: 37498593]
  3. Rheumatol Int. 2024 Oct;44(10):2027-2041 [PMID: 39207588]
  4. J Korean Med Sci. 2018 Aug 16;33(35):e247 [PMID: 30140192]
  5. J Korean Med Sci. 2023 Dec 04;38(47):e405 [PMID: 38050915]
  6. J Korean Med Sci. 2024 Aug 26;39(33):e249 [PMID: 39189714]
  7. Rheumatol Int. 2024 Nov;44(11):2483-2496 [PMID: 39249141]
  8. J Korean Med Sci. 2020 Nov 02;35(42):e379 [PMID: 33140591]
  9. Rev Assoc Med Bras (1992). 2023 Sep 18;69(9):e20230560 [PMID: 37729376]
  10. J Korean Med Sci. 2023 Jul 03;38(26):e207 [PMID: 37401498]
  11. Rheumatol Int. 2024 Oct;44(10):2043-2053 [PMID: 39126460]
  12. Res Integr Peer Rev. 2023 May 18;8(1):4 [PMID: 37198671]
  13. BMC Med Educ. 2023 Sep 22;23(1):689 [PMID: 37740191]
  14. J Med Internet Res. 2023 Aug 31;25:e51584 [PMID: 37651164]
  15. Clin Chem Lab Med. 2023 Nov 30;62(5):835-843 [PMID: 38019961]
  16. J Pediatr Pharmacol Ther. 2024 Aug;29(4):441-445 [PMID: 39144391]

MeSH Term

Artificial Intelligence
Humans
Peer Review, Research
Peer Review
Plagiarism
Algorithms

Word Cloud

Created with Highcharts 10.0.0AIacademicreviewscientificresearchpeerhumanpublishinglanguagesignificancebenefitsprocessesethicalexpertisepotentialAI'sArtificialIntelligencePeerPublishingrapidadvancementartificialintelligencetransformedvariousaspectsincludingrecentyearstoolslargemodelsdemonstratedcapabilitystreamlinenumeroustaskstraditionallyhandlededitorsreviewersapplicationsrangeautomatedgrammarchecksplagiarismdetectionformatcomplianceevenpreliminaryassessmentsubstantiallyefficiencyaccuracyintegrationraisescriticalmethodologicalquestionsparticularlylackssubtleunderstandingcomplexcontentprovidesposingchallengesevaluatingnoveltyAdditionallyrisksassociatedover-reliancebiasesalgorithmsconcernsrelatedtransparencyaccountabilitydataprivacyevaluatesperspectiveswithincommunityintegratingexploringlimitationsaimofferpracticalrecommendationsensureusedsupportivetoolsupportingreplacingguidelinesessentialpreservingintegrityqualityworkbenefitingefficiencieseditorialReview:EnhancingEfficiencyPreservingIntegrityEthicsOpenAccessReview

Similar Articles

Cited By