Evolution in the synthesis of 1,4-benzothiazines over the last decade (2014 to 2024).

Hemant Kumar Rundla, Shivani Soni, Sunita Teli, Shikha Agarwal, Lokesh Kumar Agarwal
Author Information
  1. Hemant Kumar Rundla: Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan 313001 India shikhaagarwal@mlsu.ac.in lokeshkumar@mlsu.ac.in hema00886@gmail.com.
  2. Shivani Soni: Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan 313001 India shikhaagarwal@mlsu.ac.in lokeshkumar@mlsu.ac.in hema00886@gmail.com.
  3. Sunita Teli: Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan 313001 India shikhaagarwal@mlsu.ac.in lokeshkumar@mlsu.ac.in hema00886@gmail.com.
  4. Shikha Agarwal: Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan 313001 India shikhaagarwal@mlsu.ac.in lokeshkumar@mlsu.ac.in hema00886@gmail.com. ORCID
  5. Lokesh Kumar Agarwal: Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan 313001 India shikhaagarwal@mlsu.ac.in lokeshkumar@mlsu.ac.in hema00886@gmail.com.

Abstract

1,4-Benzothiazine (1,4-BT) is a heterocyclic compound consisting of a benzene ring fused with a thiazine ring, incorporating both nitrogen and sulfur atoms. The fusion of the benzene and thiazine frameworks enhances its biological properties, making it a valuable scaffold for designing innovative heterocyclic systems. This versatile and significant member of the heteroarene family bridges synthetic organic chemistry with medicinal, pharmaceutical, and industrial applications. This structural motif demonstrates remarkable potential for accommodating a wide range of substrates and functionalizations, giving rise to diverse biological activities such as antipsychotropic, antiviral, antithyroid, antimicrobial, antifungal, antitubercular, antioxidant, and anti-inflammatory properties. Numerous derivatives have been synthesized as target structures in drug development. This review highlights various synthetic approaches to prepare 1,4-BTs. Well-established methods, such as the reactions of 2-aminothiophenol (2-ATP) with alkenes, enaminones, carboxylic acids, esters, furan-2,3-dione, aroylmethylidene malonate and 1,3-dicarbonyl compounds, are summarized. Additionally, the miscellaneous syntheses of 1,4-BTs were also outlined. These methods have utilized various catalysts, including nanocatalysts and metal-based catalysts, under diverse reaction conditions for efficient synthesis. The deep analysis of the synthesis of 1,4-BTs will grasp the scientific community towards their synthetic aspects and further advances in the field.

References

  1. Bioorg Med Chem Lett. 2009 Jul 1;19(13):3637-41 [PMID: 19447623]
  2. Eur J Med Chem. 2011 Sep;46(9):4100-6 [PMID: 21724303]
  3. Nat Prod Res. 2005 Sep;19(6):585-9 [PMID: 16010824]
  4. Melanoma Res. 1998 Apr;8(2):105-12 [PMID: 9610862]
  5. Heliyon. 2023 Dec 10;10(1):e23258 [PMID: 38205285]
  6. Bioorg Med Chem. 2002 Nov;10(11):3415-23 [PMID: 12213454]
  7. Curr Pharm Des. 2015;21(8):977-1010 [PMID: 25354181]
  8. Biochem Pharmacol. 1997 May 15;53(10):1435-44 [PMID: 9260870]
  9. Science. 2000 Mar 17;287(5460):1964-9 [PMID: 10720315]
  10. Eur J Med Chem. 2017 Sep 29;138:748-760 [PMID: 28728107]
  11. Eur J Med Chem. 2001 Feb;36(2):127-36 [PMID: 11311744]
  12. Anticancer Agents Med Chem. 2024;24(5):358-371 [PMID: 37957911]
  13. Farmaco. 1995 Feb;50(2):107-12 [PMID: 7766274]
  14. Org Biomol Chem. 2024 Aug 14;22(32):6593-6604 [PMID: 39086328]
  15. Chem Commun (Camb). 2022 Feb 10;58(13):2216-2219 [PMID: 35072669]
  16. Chemistry. 2019 May 17;25(28):6902-6906 [PMID: 30913321]
  17. Molecules. 2023 Aug 25;28(17): [PMID: 37687069]
  18. Pigment Cell Res. 2003 Oct;16(5):480-6 [PMID: 12950724]
  19. J Med Chem. 2005 Dec 1;48(24):7658-66 [PMID: 16302806]
  20. J Med Chem. 2003 Aug 14;46(17):3670-9 [PMID: 12904071]
  21. Biochem Pharmacol. 1995 Jun 29;50(1):111-22 [PMID: 7605336]
  22. Org Lett. 2016 Dec 16;18(24):6424-6427 [PMID: 27978628]
  23. Org Biomol Chem. 2020 May 6;18(17):3234-3238 [PMID: 32270843]
  24. Bioorg Med Chem. 2006 Aug 1;14(15):5196-203 [PMID: 16650767]
  25. J Org Chem. 2023 Feb 17;88(4):2561-2569 [PMID: 36719706]
  26. Bioorg Med Chem. 1998 Jan;6(1):103-8 [PMID: 9502109]
  27. Arch Pharm (Weinheim). 2012 Nov;345(11):841-51 [PMID: 22893514]
  28. Angew Chem Int Ed Engl. 1999 Dec 16;38(24):3743-3748 [PMID: 10649345]
  29. J Med Chem. 2008 Jul 24;51(14):4321-30 [PMID: 18578473]
  30. Chem Pharm Bull (Tokyo). 1990 May;38(5):1238-45 [PMID: 2118427]
  31. Mini Rev Med Chem. 2018;18(1):42-57 [PMID: 28552049]
  32. Mini Rev Med Chem. 2005 Dec;5(12):1061-73 [PMID: 16375752]

Word Cloud

Created with Highcharts 10.0.01synthetic4-BTssynthesisheterocyclicbenzeneringthiazinebiologicalpropertiesdiversevariousmethodscatalysts4-Benzothiazine4-BTcompoundconsistingfusedincorporatingnitrogensulfuratomsfusionframeworksenhancesmakingvaluablescaffolddesigninginnovativesystemsversatilesignificantmemberheteroarenefamilybridgesorganicchemistrymedicinalpharmaceuticalindustrialapplicationsstructuralmotifdemonstratesremarkablepotentialaccommodatingwiderangesubstratesfunctionalizationsgivingriseactivitiesantipsychotropicantiviralantithyroidantimicrobialantifungalantitubercularantioxidantanti-inflammatoryNumerousderivativessynthesizedtargetstructuresdrugdevelopmentreviewhighlightsapproachesprepareWell-establishedreactions2-aminothiophenol2-ATPalkenesenaminonescarboxylicacidsestersfuran-23-dionearoylmethylidenemalonate3-dicarbonylcompoundssummarizedAdditionallymiscellaneoussynthesesalsooutlinedutilizedincludingnanocatalystsmetal-basedreactionconditionsefficientdeepanalysiswillgraspscientificcommunitytowardsaspectsadvancesfieldEvolution4-benzothiazineslastdecade20142024

Similar Articles

Cited By