A 3D-printed optical microscope for low-cost histological imaging.

Jay Christopher, Rebecca Craig, Rebecca E McHugh, Andrew J Roe, Ralf Bauer, Brian Patton, Gail McConnell, Liam M Rooney
Author Information
  1. Jay Christopher: Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK. ORCID
  2. Rebecca Craig: Department of Physics, University of Strathclyde, Glasgow, UK. ORCID
  3. Rebecca E McHugh: Department of Bacteriology, School of Infection & Immunity, University of Glasgow, Glasgow, UK. ORCID
  4. Andrew J Roe: Department of Bacteriology, School of Infection & Immunity, University of Glasgow, Glasgow, UK. ORCID
  5. Ralf Bauer: Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK. ORCID
  6. Brian Patton: Department of Physics, University of Strathclyde, Glasgow, UK. ORCID
  7. Gail McConnell: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK. ORCID
  8. Liam M Rooney: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK. ORCID

Abstract

We present the manufacture and characterisation of a 3D-printed, low-cost optical microscope using both a 3D-printed chassis and 3D-printed illumination and imaging optics. The required commercial components, consisting of a basic camera for image acquisition and light emitting diode controlled by a Raspberry Pi for illumination, are integrated into the 3D-printed microscope with the full design shown for ease of replication. Our 3D-printed microscope uses a single 3D-printed objective lens with a 2.9�� magnification and a numerical aperture of 0.07. To benchmark the imaging performance of the system, we used standard test targets and histological specimens, namely, a Giemsa-stained blood smear sample and a thin section of mouse kidney stained with haemotoxylin and eosin. We demonstrated that subcellular resolution was obtained, and we corroborated this by imaging individual red blood cells and intricate anatomical details of the stained mouse kidney section. All of this was achieved using entirely 3D-printed hardware and optics, at a fraction of the cost of a commercial bright-field microscope, while presenting remarkable potential for customisation and increased accessibility for diagnostic imaging applications.

Keywords

References

  1. Amann, S., von Witzleben, M., & Breuer, S. (2019). 3D���printable portable open���source platform for low���cost lens���less holographic cellular imaging. Scientific Reports, 9, 11260.
  2. Diederich, B., Lachmann, R., Carlstedt, S., Marsikova, B., Wang, H., Uwurukundo, X., Mosig, A. S., & Heintzmann, R. (2020). A versatile and customizable low���cost 3D���printed open standard for microscopic imaging. Nature Communications, 11, 5979.
  3. Cabello, M. K. E., & Guzman, J. E. D. (2023). Utilization of accessible resources in the fabrication of an affordable, portable, high���resolution, 3D printed, digital microscope for Philippine diagnostic applications. PLoS Global Public Health, 3, e0002070.
  4. Rosen, D. G., Sobroza de Mello, E., Dhingra, S., Dawsey, S. M., Knapper, J., Bowman, R., & Anandasabapathy, S. (2024). Utility of a low���cost 3���D printed microscope for evaluating esophageal biopsies. Annals of 3D Printed Medicine, 13, 100145.
  5. Naqvi, A., Cervantes, J., Dudrey, E., Manglik, N., Perry, C., & Mulla, Z. (2020). Evaluating the performance of a low���cost mobile phone attachable microscope in cervical cytology. BMC Women's Health, 17, S258.
  6. Knapper, J., Whiteford, F., Rosen, D., Wadsworth, W., Stirling, J., Mduda, J., Sanga, V. L., Nyakyi, P. T., Nkoudou, T. H. M., Jafsia, E., Fadanka, S., Anandasabapathy, S., & Bowman, R. (2024). Developing the OpenFlexure Microscope towards medical use: Technical and social challenges of developing globally accessible hardware for healthcare. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 382, 20230257.
  7. Sharkey, J. P., Foo, D. C. W., Kabla, A., Baumberg, J. J., & Bowman, R. W. (2016). A one���piece 3D printed flexure translation stage for open���source microscopy. Review of Scientific Instruments, 87, 025104.
  8. McDermott, S., Ayazi, F., Collins, J., Knapper, J., Stirling, J., Bowman, R., & Cicuta, P. (2022). Multi���modal microscopy imaging with the OpenFlexure Delta Stage. Optics Express, 30, 26377���26395.
  9. Knapper, J., Collins, J. T., Julian, S., McDermott, S., Wadsworth, W., & Bowman, R. W. (2022). Fast, high���precision autofocus on amotorised microscope: Automating blood sample imaging on the OpenFlexure Microscope. Journal of Microscopy, 285, 29���39.
  10. Berglund, G. D., & Tkaczyk, T. S. (2019). Fabrication of optical components using a consumer���grade lithographic printer. Optics Express, 27, 30405.
  11. Rooney, L. M., Christopher, J., Watson, B., Kumar, Y. S., Copeland, L., Walker, L. D., Foylan, S., Amos, W. B., Bauer, R., & McConnell, G. (2024). Printing, characterizing, and assessing transparent 3D printed lenses for optical imaging. Advanced Materials Technologies, 9, 2400043.
  12. Christopher, J., Rooney, L. M., Donnachie, M., Uttamchandani, D., McConnell, G., & Bauer, R. (2024). Low���cost 3D printed lenses for brightfield and fluorescence microscopy. Biomedical Optics Express, 15, 2224���2237.
  13. Bowman, R. Build a Microscope. Retrieved from https://openflexure.org/projects/microscope/build
  14. Reynoso, M., Gauli, I., & Measor, P. (2021). Refractive index and dispersion of transparent 3D printing photoresins. Optical Materials Express, 11, 3392.
  15. Pawley, J. B. (Ed.). (2006). Handbook of biological confocal microscopy (3rd ed.). Springer Science & Business Media, LLC.
  16. Schindelin, J., Arganda���Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.���Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open���source platform for biological���image analysis. Nature Methods, 9, 676���682.
  17. Parslow, A., Cardona, A., & Bryson���Richardson, R. J. (2014). Sample drift correction following 4D confocal time���lapse imaging. Journal of Visualized Experiments, 51086.
  18. Cybulski, J. S., Clements, J., & Prakash, M. (2014). Foldscope: Origami���based paper microscope. PLoS ONE, 9, e98781.
  19. Burke, N., M��ller, G., Hassett, A. R., S��illeabh��in, P. ��., Healy, D., Reynaud, E. G., & Pickering, M. (2024). EnderScope: A low���cost 3D printer���based scanning microscope for microplastic detection. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 382(2274), 20230214.
  20. Temiz, Y. (2021). An open���source MICROSCOPE built using LEGO bricks, 3D���printing, Arduino and Raspberry Pi. MicroscoPy. Retrieved from https://github.com/IBM/MicroscoPy
  21. Cairns, G., & Patton, B. M4All: MultiModal modular microscopy for all. M4All: MultiModal Modular Microscopy for All. Retrieved from https://github.com/NanoBioPhotonics���Strathclyde/M4All

Grants

  1. EP/T517938/1/Engineering and Physical Sciences Research Council
  2. EP/T517938/1/Engineering and Physical Sciences Research Council
  3. EP/S032606/1/Engineering and Physical Sciences Research Council
  4. MR/V011499/1/Medical Research Council
  5. EP/T517938/1/EPSRC
  6. EP/T517938/1/EPSRC
  7. EP/S032606/1/EPSRC
  8. BB/Z51486X/1/Biotechnology and Biological Sciences Research Council
  9. BB/Z51486X/1/Biotechnology and Biological Sciences Research Council
  10. BB/P02565X/1/Biotechnology and Biological Sciences Research Council
  11. CHG/R1/170017/Royal Society
  12. MR/K015583/1/MRC
  13. BB/Z51486X/1/BBSRC
  14. BB/Z51486X/1/BBSRC
  15. BB/P02565X/1/BBSRC
  16. BBT011602/BBSRC
  17. /Leverhulme Trust

Word Cloud

Created with Highcharts 10.0.03D-printedimagingmicroscopeopticslow-costopticalusingilluminationcommercialhistologicalbloodsectionmousekidneystaineddiagnosticmicroscopypresentmanufacturecharacterisationchassisrequiredcomponentsconsistingbasiccameraimageacquisitionlightemittingdiodecontrolledRaspberryPiintegratedfulldesignshowneasereplicationusessingleobjectivelens29��magnificationnumericalaperture007benchmarkperformancesystemusedstandardtesttargetsspecimensnamelyGiemsa-stainedsmearsamplethinhaemotoxylineosindemonstratedsubcellularresolutionobtainedcorroboratedindividualredcellsintricateanatomicaldetailsachievedentirelyhardwarefractioncostbright-fieldpresentingremarkablepotentialcustomisationincreasedaccessibilityapplicationsadditivemanufacturingopen

Similar Articles

Cited By