The Latest Advances in Microfluidic DLD Cell Sorting Technology: The Optimization of Channel Design.

Dan Fan, Yi Liu, Yaling Liu
Author Information
  1. Dan Fan: School of Engineering, Dali University, Dali 671003, China.
  2. Yi Liu: School of Engineering, Dali University, Dali 671003, China. ORCID
  3. Yaling Liu: Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.

Abstract

Cell sorting plays a crucial role in both medical and biological research. As a key passive sorting technique in the field of microfluidics, deterministic lateral displacement (DLD) has been widely applied to cell separation and sorting. This review aims to summarize the latest advances in the optimization of channel design for microfluidic DLD cell sorting. First, we provide an overview of the design elements of microfluidic DLD cell sorting channels, focusing on key factors that affect separation efficiency and accuracy, including channel geometry, fluid dynamics, and the interaction between cells and channel surfaces. Subsequently, we review recent innovations and progress in channel design for microfluidic DLD technology, exploring its applications in biomedical fields and its integration with machine learning. Additionally, we discuss the challenges currently faced in optimizing channel design for microfluidic DLD cell sorting. Finally, based on existing research, we make a summary and put forward prospective views on the further development of this field.

Keywords

References

  1. Lab Chip. 2014 Feb 21;14(4):626-45 [PMID: 24406985]
  2. Anal Chem. 2019 May 21;91(10):6514-6521 [PMID: 31035752]
  3. Micromachines (Basel). 2022 Feb 25;13(3): [PMID: 35334657]
  4. Biomed Microdevices. 2015;17(3):9964 [PMID: 26002773]
  5. Micromachines (Basel). 2022 Apr 23;13(5): [PMID: 35630129]
  6. Lab Chip. 2023 Mar 1;23(5):1226-1257 [PMID: 36655549]
  7. Sci Rep. 2016 Oct 06;6:34375 [PMID: 27708337]
  8. Micromachines (Basel). 2024 Jan 31;15(2): [PMID: 38398943]
  9. Lab Chip. 2014 Nov 7;14(21):4250-62 [PMID: 25209150]
  10. Adv Drug Deliv Rev. 2014 Dec 15;79-80:68-78 [PMID: 25017040]
  11. J Adv Res. 2023 May;47:105-121 [PMID: 35964874]
  12. Biomicrofluidics. 2019 Jun 28;13(3):034118 [PMID: 31431814]
  13. Micromachines (Basel). 2024 Mar 17;15(3): [PMID: 38542652]
  14. Micromachines (Basel). 2019 Nov 11;10(11): [PMID: 31718021]
  15. Talanta. 2024 Jan 1;266(Pt 1):124895 [PMID: 37454511]
  16. EBioMedicine. 2023 Apr;90:104522 [PMID: 36933411]
  17. Analyst. 2020 Nov 9;145(22):7103-7124 [PMID: 33001061]
  18. J Chromatogr A. 2007 Aug 31;1162(2):154-61 [PMID: 17561026]
  19. Annu Rev Biomed Eng. 2014 Jul 11;16:371-96 [PMID: 24905880]
  20. Sci Rep. 2018 Feb 26;8(1):3618 [PMID: 29483594]
  21. Lab Chip. 2015 Mar 7;15(5):1230-49 [PMID: 25598308]
  22. Biomed Microdevices. 2020 Jun 3;22(2):42 [PMID: 32495156]
  23. Anal Chem. 2011 Nov 1;83(21):8050-6 [PMID: 21812408]
  24. J Biomed Opt. 2011 Jun;16(6):066008 [PMID: 21721809]
  25. Micromachines (Basel). 2024 Jun 18;15(6): [PMID: 38930772]
  26. Sci Rep. 2017 Aug 30;7(1):9915 [PMID: 28855584]
  27. Lab Chip. 2006 May;6(5):655-8 [PMID: 16652181]
  28. Biosensors (Basel). 2024 Sep 29;14(10): [PMID: 39451679]
  29. Oncol Lett. 2019 Feb;17(2):1581-1588 [PMID: 30675216]
  30. Anal Chem. 2016 Jan 5;88(1):354-80 [PMID: 26567589]
  31. Biosens Bioelectron. 2023 Oct 1;237:115451 [PMID: 37327603]
  32. J Chem Phys. 2015 Dec 28;143(24):243145 [PMID: 26723630]
  33. Lab Chip. 2024 Apr 30;24(9):2575-2589 [PMID: 38646820]
  34. Lab Chip. 2012 Mar 21;12(6):1048-51 [PMID: 22327631]
  35. Anal Chem. 2018 Jul 17;90(14):8546-8552 [PMID: 29911381]
  36. Lab Chip. 2021 Sep 14;21(18):3550-3558 [PMID: 34292287]
  37. Drug Deliv Transl Res. 2025 Jan 10;: [PMID: 39792336]
  38. Comput Methods Programs Biomed. 2021 Jan;198:105807 [PMID: 33130497]
  39. Biomed Microdevices. 2020 Nov 10;22(4):80 [PMID: 33170362]
  40. Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5034-E5041 [PMID: 28607075]
  41. Sci Rep. 2015 Jul 08;5:11018 [PMID: 26154774]
  42. Micromachines (Basel). 2023 Jan 17;14(2): [PMID: 36837938]
  43. Sci Rep. 2016 Mar 10;6:22934 [PMID: 26961061]
  44. Lab Chip. 2022 Oct 11;22(20):3869-3876 [PMID: 36065949]
  45. Biomicrofluidics. 2021 Feb 19;15(1):014111 [PMID: 33643513]
  46. Anal Chem. 2022 Feb 1;94(4):1949-1957 [PMID: 35040640]
  47. Science. 2004 May 14;304(5673):987-90 [PMID: 15143275]
  48. Curr Protoc Immunol. 2018 Feb 21;120:5.1.1-5.1.11 [PMID: 29512141]
  49. J Am Chem Soc. 2016 Mar 9;138(9):3152-60 [PMID: 26871001]
  50. Dev Cell. 2019 Feb 11;48(3):293-311 [PMID: 30753835]
  51. J Hepatol. 2022 Dec;77(6):1598-1606 [PMID: 36208844]
  52. Biosens Bioelectron. 2021 Dec 15;194:113666 [PMID: 34600338]
  53. Sci Rep. 2023 Dec 18;13(1):22462 [PMID: 38105340]
  54. Biosensors (Basel). 2022 Dec 22;13(1): [PMID: 36671848]
  55. Methods Mol Biol. 2024;2804:77-89 [PMID: 38753141]
  56. Nat Commun. 2013;4:1625 [PMID: 23535646]
  57. Nat Nanotechnol. 2016 Nov;11(11):936-940 [PMID: 27479757]
  58. Biosensors (Basel). 2024 Apr 04;14(4): [PMID: 38667167]
  59. Lab Chip. 2006 Aug;6(8):974-80 [PMID: 16874365]
  60. Lab Chip. 2014 Nov 7;14(21):4139-58 [PMID: 25212386]
  61. Nanomicro Lett. 2019 Sep 17;11(1):77 [PMID: 34138050]
  62. Anal Bioanal Chem. 2010 Aug;397(8):3249-67 [PMID: 20419490]
  63. Lab Chip. 2018 May 29;18(11):1521-1532 [PMID: 29725680]
  64. J Nanobiotechnology. 2022 Mar 31;20(1):171 [PMID: 35361237]
  65. Nat Commun. 2021 Jan 4;12(1):25 [PMID: 33397940]
  66. Sensors (Basel). 2022 Aug 24;22(17): [PMID: 36080827]
  67. Lab Chip. 2017 Sep 26;17(19):3318-3330 [PMID: 28861573]
  68. Lab Chip. 2008 Jun;8(6):925-31 [PMID: 18497913]
  69. RSC Adv. 2024 Jan 8;14(3):1729-1740 [PMID: 38192326]
  70. Small. 2017 Oct;13(37): [PMID: 28783259]
  71. Microsyst Nanoeng. 2023 Sep 21;9:116 [PMID: 37744264]
  72. Nanomicro Lett. 2016;8(3):270-281 [PMID: 30460287]
  73. Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14779-84 [PMID: 17001005]
  74. ACS Nano. 2020 Sep 22;14(9):10784-10795 [PMID: 32844655]
  75. Analyst. 2018 Dec 17;144(1):87-113 [PMID: 30402633]
  76. J Chromatogr A. 2022 Aug 30;1679:463384 [PMID: 35940060]
  77. Lab Chip. 2023 Sep 26;23(19):4313-4323 [PMID: 37702123]
  78. Lab Chip. 2022 Aug 9;22(16):2925-2937 [PMID: 35904162]
  79. Micromachines (Basel). 2019 Jun 12;10(6): [PMID: 31212873]
  80. Sci Rep. 2023 Mar 27;13(1):4994 [PMID: 36973401]
  81. ACS Nano. 2021 Nov 23;15(11):18023-18036 [PMID: 34714639]
  82. Comput Methods Programs Biomed. 2014 Mar;113(3):767-80 [PMID: 24440135]
  83. Crit Rev Biotechnol. 2017 Mar;37(2):163-176 [PMID: 26767547]
  84. Lab Chip. 2023 Apr 12;23(8):2131-2140 [PMID: 36974599]
  85. Sensors (Basel). 2024 Sep 10;24(18): [PMID: 39338617]
  86. Comput Biol Med. 2014 Nov;54:180-7 [PMID: 25282708]
  87. ACS Sens. 2022 Feb 25;7(2):666-673 [PMID: 35113538]
  88. Sci Rep. 2017 May 26;7(1):2433 [PMID: 28550299]
  89. Cells. 2022 Mar 05;11(5): [PMID: 35269527]
  90. Sci Rep. 2021 May 7;11(1):9804 [PMID: 33963232]
  91. Interface Focus. 2014 Dec 6;4(6):20140011 [PMID: 25485078]
  92. Nat Biomed Eng. 2018 Oct;2(10):761-772 [PMID: 30854249]
  93. Nat Biotechnol. 2020 Jun;38(6):715-721 [PMID: 32231335]

MeSH Term

Humans
Cell Separation
Microfluidics
Microfluidic Analytical Techniques

Word Cloud

Created with Highcharts 10.0.0sortingDLDchannelcelldesignmicrofluidicCellresearchkeyfieldmicrofluidicsseparationreviewmachinelearningplayscrucialrolemedicalbiologicalpassivetechniquedeterministiclateraldisplacementwidelyappliedaimssummarizelatestadvancesoptimizationFirstprovideoverviewelementschannelsfocusingfactorsaffectefficiencyaccuracyincludinggeometryfluiddynamicsinteractioncellssurfacesSubsequentlyrecentinnovationsprogresstechnologyexploringapplicationsbiomedicalfieldsintegrationAdditionallydiscusschallengescurrentlyfacedoptimizingFinallybasedexistingmakesummaryputforwardprospectiveviewsdevelopmentLatestAdvancesMicrofluidicSortingTechnology:OptimizationChannelDesign

Similar Articles

Cited By