Seaweed-Derived Ulvan: A Promising Marine Polysaccharide as a Sustainable Resource for Biomaterial Design.

Rizfi Fariz Pari, Uju Uju, Safrina Dyah Hardiningtyas, Wahyu Ramadhan, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya
Author Information
  1. Rizfi Fariz Pari: Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan. ORCID
  2. Uju Uju: Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia. ORCID
  3. Safrina Dyah Hardiningtyas: Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia. ORCID
  4. Wahyu Ramadhan: Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia. ORCID
  5. Rie Wakabayashi: Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan. ORCID
  6. Masahiro Goto: Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan. ORCID
  7. Noriho Kamiya: Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan. ORCID

Abstract

Green seaweed is currently underused compared with other major seaweed types. Many scientists have reported applications of the green seaweed in various fields in recent years, which makes it a candidate for biomass production in industrial biorefineries. contains a unique Polysaccharide called Ulvan, which is being considered for medicinal and pharmacological applications. Ulvan is a sulfated Polysaccharide including rhamnose and glucuronic acid residues, which has a range of bioactivities, including immunomodulatory, antimicrobial, and anticoagulant properties. The biocompatibility of Ulvan makes it a versatile candidate for biomaterial design. This review presents an in-depth analysis of the potential applications of Ulvan, starting with extraction methods and structural/biological characterization and moving on to biomaterial design. We also highlight the advantages of Ulvan over traditional seaweed polysaccharides such as agar, carrageenan, and alginate.

Keywords

References

  1. Int J Biol Macromol. 2023 Dec 31;253(Pt 4):126936 [PMID: 37722645]
  2. Trop Life Sci Res. 2017 Jul;28(2):119-125 [PMID: 28890765]
  3. Plants (Basel). 2024 Apr 30;13(9): [PMID: 38732473]
  4. Carbohydr Polym. 2018 Feb 1;181:902-910 [PMID: 29254052]
  5. Toxicol In Vitro. 2014 Feb;28(1):120-4 [PMID: 24134852]
  6. Sci Total Environ. 2024 Nov 15;951:175654 [PMID: 39168316]
  7. Biomaterials. 2004 Nov;25(26):5681-703 [PMID: 15147815]
  8. Mar Drugs. 2015 Jan 26;13(2):697-712 [PMID: 25629385]
  9. Int J Biol Macromol. 2011 Dec 1;49(5):1051-8 [PMID: 21907732]
  10. Int J Biol Macromol. 2017 Sep;102:605-612 [PMID: 28431944]
  11. Mar Drugs. 2023 Oct 25;21(11): [PMID: 37999380]
  12. Biochim Biophys Acta. 2005 Dec 30;1754(1-2):253-62 [PMID: 16198162]
  13. Bioresour Technol. 2013 Dec;150:106-12 [PMID: 24157682]
  14. Biomater Sci. 2021 Apr 7;9(7):2424-2438 [PMID: 33428695]
  15. Biochem J. 2004 Jul 1;381(Pt 1):241-8 [PMID: 15025556]
  16. Mar Drugs. 2018 Jul 11;16(7): [PMID: 29997311]
  17. Carbohydr Polym. 2021 Sep 1;267:118241 [PMID: 34119188]
  18. Foods. 2024 Sep 05;13(17): [PMID: 39272585]
  19. Food Chem. 2017 Nov 15;235:275-282 [PMID: 28554636]
  20. Phytother Res. 2013 Aug;27(8):1143-8 [PMID: 22972627]
  21. Nat Prod Res. 2018 Oct;32(19):2291-2296 [PMID: 29199449]
  22. Ultrason Sonochem. 2024 Dec;111:107072 [PMID: 39362034]
  23. Biotechnol Adv. 2018 May - Jun;36(3):798-817 [PMID: 29428561]
  24. Nature. 2022 Nov;611(7937):801-809 [PMID: 36266581]
  25. Int J Biol Macromol. 2016 Nov;92:820-830 [PMID: 27481342]
  26. J Nanobiotechnology. 2017 Mar 7;15(1):20 [PMID: 28270147]
  27. Bioresour Technol. 2013 May;135:182-90 [PMID: 23186669]
  28. Natl Sci Rev. 2019 Jul;6(4):825-838 [PMID: 34691936]
  29. Mar Drugs. 2019 Oct 30;17(11): [PMID: 31671676]
  30. Metabolites. 2019 Sep 12;9(9): [PMID: 31547343]
  31. Bioresour Technol. 2016 Aug;214:487-495 [PMID: 27174616]
  32. Int J Biol Macromol. 2021 Jul 31;183:435-446 [PMID: 33932420]
  33. Int J Biol Macromol. 2014 Mar;64:1-5 [PMID: 24296406]
  34. Molecules. 2019 Jun 05;24(11): [PMID: 31195764]
  35. Molecules. 2021 Aug 06;26(16): [PMID: 34443349]
  36. Bioresour Bioprocess. 2023 Sep 25;10(1):66 [PMID: 38647949]
  37. Carbohydr Polym. 2020 Apr 1;233:115852 [PMID: 32059903]
  38. Pharmaceuticals (Basel). 2023 Apr 28;16(5): [PMID: 37242444]
  39. Nat Rev Bioeng. 2023 Feb;1(2):107-124 [PMID: 37772035]
  40. J Biomed Nanotechnol. 2015 Nov;11(11):2067-80 [PMID: 26554164]
  41. Bioresour Technol. 2017 Nov;243:867-873 [PMID: 28738503]
  42. Nature. 2008 Jul 24;454(7203):428-35 [PMID: 18650913]
  43. Sci Rep. 2018 Feb 15;8(1):3062 [PMID: 29449622]
  44. Food Funct. 2022 Jan 4;13(1):52-63 [PMID: 34704575]
  45. Polymers (Basel). 2022 May 31;14(11): [PMID: 35683916]
  46. Mar Drugs. 2013 Oct 22;11(10):4019-34 [PMID: 24152562]
  47. Biologia (Bratisl). 2023;78(2):291-305 [PMID: 36159744]
  48. J Appl Phycol. 2018;30(2):1281-1293 [PMID: 29755208]
  49. Int J Biol Macromol. 2020 Apr 1;148:1156-1168 [PMID: 31917214]
  50. Pharm Biol. 2017 Dec;55(1):435-440 [PMID: 27937044]
  51. Int J Biol Macromol. 2021 Apr 30;177:401-412 [PMID: 33577821]
  52. Int J Biol Macromol. 2024 Jul;273(Pt 2):132882 [PMID: 38848853]
  53. Chem Pharm Bull (Tokyo). 2021;69(5):432-443 [PMID: 33952853]
  54. Molecules. 2023 Jan 03;28(1): [PMID: 36615604]
  55. J Photochem Photobiol B. 2018 Jan;178:249-258 [PMID: 29169140]
  56. Glycobiology. 2017 Mar 15;27(3):200-205 [PMID: 28177454]
  57. Mar Drugs. 2021 Sep 29;19(10): [PMID: 34677451]
  58. Sci Rep. 2016 Jul 29;6:30728 [PMID: 27470705]
  59. Carbohydr Polym. 2021 Feb 1;253:117283 [PMID: 33278949]
  60. Mar Drugs. 2019 Jun 14;17(6): [PMID: 31207947]
  61. iScience. 2022 Mar 02;25(4):104019 [PMID: 35340432]
  62. J Food Drug Anal. 2018 Apr;26(2):599-608 [PMID: 29567229]
  63. Food Chem. 2024 Oct 30;456:140090 [PMID: 38878542]
  64. J Med Food. 2012 Feb;15(2):135-44 [PMID: 22191629]
  65. Int J Biol Macromol. 2013 Jul;58:225-30 [PMID: 23587999]
  66. Carbohydr Polym. 2021 Sep 1;267:118161 [PMID: 34119135]
  67. Int Immunopharmacol. 2009 Mar;9(3):324-9 [PMID: 19159698]
  68. Int J Biol Macromol. 2024 Jan;256(Pt 2):128335 [PMID: 38007028]
  69. J Appl Phycol. 2016;28(6):3511-3525 [PMID: 28035175]
  70. Plants (Basel). 2021 Nov 17;10(11): [PMID: 34834845]
  71. Nat Prod Res. 2016 Sep;30(17):1934-7 [PMID: 26360806]
  72. Int J Biol Macromol. 2020 May 1;150:714-726 [PMID: 32061702]
  73. Mar Drugs. 2011;9(6):922-933 [PMID: 21747738]
  74. Int Immunopharmacol. 2007 Jul;7(7):879-88 [PMID: 17499190]
  75. Nat Prod Res. 2017 Sep;31(18):2126-2136 [PMID: 28147712]
  76. FASEB J. 1987 Aug;1(2):89-96 [PMID: 3111928]
  77. Int J Biol Macromol. 2023 Jan 15;225:952-963 [PMID: 36402385]
  78. Carbohydr Polym. 2018 Oct 1;197:631-640 [PMID: 30007656]
  79. Int J Biol Macromol. 2016 Oct;91:269-77 [PMID: 27212215]
  80. Carbohydr Polym. 2020 Dec 1;249:116841 [PMID: 32933684]
  81. Acta Biomater. 2013 Nov;9(11):9086-97 [PMID: 23816652]
  82. Bioact Mater. 2022 May 20;20:53-63 [PMID: 35633871]
  83. Drug Des Devel Ther. 2021 Oct 05;15:4213-4226 [PMID: 34675484]
  84. Biomacromolecules. 2007 Jun;8(6):1765-74 [PMID: 17458931]
  85. Mar Biotechnol (NY). 2015 Dec;17(6):718-35 [PMID: 26337523]
  86. Biomater Adv. 2025 Jan;166:214042 [PMID: 39293254]
  87. Appl Biochem Biotechnol. 2022 Jul;194(7):3097-3118 [PMID: 35347670]
  88. Harmful Algae. 2021 Jul;107:102061 [PMID: 34456020]
  89. Carbohydr Polym. 2024 Jun 1;333:121962 [PMID: 38494219]
  90. Biomed Res Int. 2016;2016:8502123 [PMID: 27419139]

Grants

  1. JPJSBP120228101/Japan Society for the Promotion of Science
  2. JPJSBP120228101/Directorate General of Higher Education (DGHE), Indonesia

MeSH Term

Polysaccharides
Ulva
Biocompatible Materials
Seaweed
Humans
Animals
Aquatic Organisms

Chemicals

Polysaccharides
ulvan
Biocompatible Materials

Word Cloud

Created with Highcharts 10.0.0seaweedulvanapplicationsbiomaterialgreenmakescandidatepolysaccharideincludingdesignGreencurrentlyunderusedcomparedmajortypesManyscientistsreportedvariousfieldsrecentyearsbiomassproductionindustrialbiorefineriescontainsuniquecalledconsideredmedicinalpharmacologicalUlvansulfatedrhamnoseglucuronicacidresiduesrangebioactivitiesimmunomodulatoryantimicrobialanticoagulantpropertiesbiocompatibilityversatilereviewpresentsin-depthanalysispotentialstartingextractionmethodsstructural/biologicalcharacterizationmovingalsohighlightadvantagestraditionalpolysaccharidesagarcarrageenanalginateSeaweed-DerivedUlvan:PromisingMarinePolysaccharideSustainableResourceBiomaterialDesigncellulosemarine

Similar Articles

Cited By (1)