Innovation in ant larval feeding facilitated queen-worker divergence and social complexity.

Arthur Matte, Adria C LeBoeuf
Author Information
  1. Arthur Matte: Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom. ORCID
  2. Adria C LeBoeuf: Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom. ORCID

Abstract

Building differences between genetically equivalent units is a fundamental challenge for all multicellular organisms and superorganisms. In ants, reproductive or worker fate is typically determined during the larval stage, through feeding regimes managed by adult caretakers. However, the feeding care provided to larvae varies significantly across ants, as does phenotypic divergence between queen and worker castes. Here, we employed comparative phylogenetic methods and causal inference to investigate the relationships between larval feeding care, caste size dimorphism, and social complexity across ant diversity. We digitized the life's work of George and Jeanette Wheeler, cataloging the larval morphology of over 700 species, and we compiled data on species diets and larval feeding behaviors from the literature and our own observations. We measured queen-worker size dimorphism in 392 species and gathered data for colony size, worker polymorphism, and worker reproduction. Our analyses revealed that ancestral active-feeding larvae evolved passive morphologies when adults began feeding them individually, typically with processed material and often following a shift to nonpredatory diets. Greater queen-worker size dimorphism coevolved with larval passiveness, alongside traits indicative of increased social complexity, including larger colony sizes, worker subcastes, and a reduction in workers' reproductive potential. Likelihood comparisons of causal phylogenetic models support that extended alloparental care facilitated stronger caste dimorphism, which, in turn and along with increased colony sizes, promoted higher social complexity. Our results suggest that enhanced adult control over larval development enabled greater phenotypic specialization within colonies, with profound implications for social evolution.

Keywords

References

  1. Proc Biol Sci. 2014 Oct 22;281(1793): [PMID: 25165765]
  2. Zootaxa. 2017 May 15;4268(1):117-130 [PMID: 28610386]
  3. Evolution. 2017 Feb;71(2):315-328 [PMID: 27859046]
  4. J Anim Ecol. 2020 Nov;89(11):2517-2530 [PMID: 32858759]
  5. Curr Top Dev Biol. 2021;141:279-336 [PMID: 33602491]
  6. Curr Opin Insect Sci. 2023 Oct;59:101085 [PMID: 37454732]
  7. PeerJ. 2018 Apr 25;6:e4718 [PMID: 29713568]
  8. Nat Commun. 2023 Mar 3;14(1):1212 [PMID: 36869077]
  9. Nature. 2018 Oct;562(7728):574-577 [PMID: 30305737]
  10. Proc Biol Sci. 2021 Jan 27;288(1943):20202815 [PMID: 33499782]
  11. Biol Lett. 2018 Jan;14(1): [PMID: 29343564]
  12. Curr Biol. 2022 Jul 11;32(13):2942-2947.e4 [PMID: 35623348]
  13. Philos Trans R Soc Lond B Biol Sci. 2009 Nov 12;364(1533):3169-79 [PMID: 19805425]
  14. Am Nat. 2020 Nov;196(5):525-540 [PMID: 33064587]
  15. Curr Biol. 2009 May 12;19(9):740-4 [PMID: 19345104]
  16. Elife. 2016 Nov 29;5: [PMID: 27894417]
  17. Am Nat. 2006 Mar;167(3):390-400 [PMID: 16673347]
  18. Nat Commun. 2018 May 3;9(1):1778 [PMID: 29725049]
  19. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21236-41 [PMID: 19948964]
  20. Trends Ecol Evol. 2008 Jan;23(1):45-52 [PMID: 18082910]
  21. Ecol Evol. 2012 Dec;2(12):3098-109 [PMID: 23301175]
  22. Arthropod Struct Dev. 2008 Mar;37(2):109-17 [PMID: 18089131]
  23. Syst Biol. 2003 Apr;52(2):131-58 [PMID: 12746144]
  24. Biol Lett. 2022 Jan;18(1):20210498 [PMID: 35078331]
  25. Evolution. 2013 Feb;67(2):378-87 [PMID: 23356611]
  26. Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2402179121 [PMID: 39110731]
  27. Science. 1981 Jul 17;213(4505):361-3 [PMID: 17819911]
  28. Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2413742122 [PMID: 39999174]
  29. Proc Biol Sci. 2012 Jun 22;279(1737):2402-8 [PMID: 22357267]
  30. Nature. 1999 Oct 28;401(6756):877-84 [PMID: 10553904]
  31. Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2201550119 [PMID: 36122199]
  32. Bioinformatics. 2008 Jan 1;24(1):129-31 [PMID: 18006550]
  33. Sci Rep. 2018 Dec 13;8(1):17830 [PMID: 30546082]
  34. J Evol Biol. 2003 Jul;16(4):647-58 [PMID: 14632228]
  35. Syst Biol. 2013 Mar;62(2):181-92 [PMID: 23024153]
  36. J Evol Biol. 2011 Sep;24(9):1939-48 [PMID: 21696476]
  37. Biol Rev Camb Philos Soc. 2018 Feb;93(1):28-54 [PMID: 28508537]
  38. Ecology. 2009 Feb;90(2):363-8 [PMID: 19323220]
  39. BMC Bioinformatics. 2006 Feb 23;7:88 [PMID: 16504105]
  40. Evol Lett. 2024 Jan 11;8(3):387-396 [PMID: 38818418]
  41. R Soc Open Sci. 2023 Dec 20;10(12):231471 [PMID: 38126067]
  42. Proc Biol Sci. 2022 Feb 9;289(1968):20211899 [PMID: 35135345]
  43. Nat Ecol Evol. 2022 Nov;6(11):1753-1765 [PMID: 36192540]
  44. Biotechniques. 2007 Jul;43(1 Suppl):25-30 [PMID: 17936939]
  45. Trends Ecol Evol. 2010 May;25(5):275-82 [PMID: 20106547]
  46. Curr Biol. 2023 Mar 27;33(6):1047-1058.e4 [PMID: 36858043]
  47. Bioessays. 2007 Apr;29(4):344-55 [PMID: 17373657]
  48. Evol Lett. 2021 Sep 16;5(6):582-594 [PMID: 34917398]
  49. J Exp Biol. 2017 Jan 1;220(Pt 1):53-62 [PMID: 28057828]
  50. Am Nat. 2019 Jun;193(6):755-772 [PMID: 31094602]
  51. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8157-60 [PMID: 12034873]
  52. J Exp Biol. 2024 Jun 15;227(12): [PMID: 38779857]
  53. Proc Biol Sci. 2023 Feb 8;290(1992):20221784 [PMID: 36750190]
  54. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10112-9 [PMID: 25964342]

Grants

  1. PR00P3_179776/Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF)

MeSH Term

Animals
Ants
Larva
Feeding Behavior
Social Behavior
Phylogeny
Biological Evolution
Female
Reproduction
Behavior, Animal

Word Cloud

Created with Highcharts 10.0.0larvalfeedingsocialworkercaresizedimorphismcomplexitycastespeciesqueen-workercolonyantsreproductivefatetypicallyadultlarvaeacrossphenotypicdivergencephylogeneticcausalantmorphologydatadietsincreasedsizesfacilitatedevolutionBuildingdifferencesgeneticallyequivalentunitsfundamentalchallengemulticellularorganismssuperorganismsdeterminedstageregimesmanagedcaretakersHoweverprovidedvariessignificantlyqueencastesemployedcomparativemethodsinferenceinvestigaterelationshipsdiversitydigitizedlife'sworkGeorgeJeanetteWheelercataloging700compiledbehaviorsliteratureobservationsmeasured392gatheredpolymorphismreproductionanalysesrevealedancestralactive-feedingevolvedpassivemorphologiesadultsbeganindividuallyprocessedmaterialoftenfollowingshiftnonpredatoryGreatercoevolvedpassivenessalongsidetraitsindicativeincludinglargersubcastesreductionworkers'potentialLikelihoodcomparisonsmodelssupportextendedalloparentalstrongerturnalongpromotedhigherresultssuggestenhancedcontroldevelopmentenabledgreaterspecializationwithincoloniesprofoundimplicationsInnovationconflictmajorevolutionarytransitionsmaternal

Similar Articles

Cited By