Rhizosphere microbiome influence on tomato growth under low-nutrient settings.

Gerardo Mejia, Angélica Jara-Servin, Cristóbal Hernández-Álvarez, Luis Romero-Chora, Mariana Peimbert, Rocío Cruz-Ortega, Luis D Alcaraz
Author Information
  1. Gerardo Mejia: Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID
  2. Angélica Jara-Servin: Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID
  3. Cristóbal Hernández-Álvarez: Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID
  4. Luis Romero-Chora: Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID
  5. Mariana Peimbert: Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, 05348 Mexico City, Mexico. ORCID
  6. Rocío Cruz-Ortega: Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID
  7. Luis D Alcaraz: Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID

Abstract

Studies have suggested that reduced nutrient availability enhances microbial diversity around plant roots, positively impacting plant productivity. However, the specific contributions of rhizosphere microbiomes in nutrient-poor environments still need to be better understood. This study investigates tomato (Solanum lycopersicum L.) root microbiome under low-nutrient conditions. Plants were grown in hydroponics with soil-derived microbial community inoculations. We hypothesized that nutrient limitation would increase the selection of beneficial bacterial communities, compensating for nutrient deficiencies. We identified 12 294 operational taxonomic units across treatments and controls using 16S rRNA gene sequencing. Increased plant biomass was observed in treatments compared to controls, suggesting a role for the microbiome in mitigating nutrient limitations. The relative abundance of genera such as Luteolibacter and Sphingopyxis relative abundance correlated with plant phenotypic traits (P ≤ .05), and their presence was further validated using shotgun metagenomics. We annotated 722 677 protein families and calculated a core set of 48 116 protein families shared across all treatments and assigned them into bacteria (93.7%) and eukaryota (6.2%). Within the core bacterial metagenome, we identified protein families associated with pathways involved in positive plant interactions like the nitrogen fixation. Limited nutrient availability enhanced plant productivity under controlled conditions, offering a path to reduce fertilizer use in agriculture.

Keywords

References

  1. mSphere. 2024 Dec 19;9(12):e0082124 [PMID: 39530672]
  2. FEMS Microbiol Ecol. 2025 Feb 20;101(3): [PMID: 39999861]
  3. Springerplus. 2016 Oct 7;5(1):1752 [PMID: 27795895]
  4. Front Plant Sci. 2021 Dec 24;12:775722 [PMID: 35003161]
  5. Genome Res. 2017 May;27(5):824-834 [PMID: 28298430]
  6. Front Microbiol. 2020 Dec 18;11:604566 [PMID: 33391227]
  7. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  8. Structure. 2017 Dec 5;25(12):1898-1906.e5 [PMID: 29129383]
  9. Annu Rev Plant Biol. 2013;64:807-38 [PMID: 23373698]
  10. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 [PMID: 26553804]
  11. Biotechnol Biofuels Bioprod. 2024 Oct 5;17(1):127 [PMID: 39369245]
  12. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  13. Sci Total Environ. 2020 Apr 1;711:134433 [PMID: 31818597]
  14. Front Microbiol. 2013 Feb 05;4:7 [PMID: 23386844]
  15. Oral Microbiol Immunol. 2006 Feb;21(1):61-8 [PMID: 16390343]
  16. Ann Appl Stat. 2020 Mar;14(1):94-115 [PMID: 32983313]
  17. Sci Rep. 2024 Sep 29;14(1):22576 [PMID: 39343957]
  18. Science. 2017 Jan 27;355(6323):391-394 [PMID: 28126817]
  19. J Microbiol Methods. 2010 Nov;83(2):141-8 [PMID: 20801169]
  20. Microbiol Spectr. 2017 Jan;5(1): [PMID: 28155813]
  21. Int J Syst Evol Microbiol. 2013 May;63(Pt 5):1891-1895 [PMID: 23002048]
  22. Nat Commun. 2024 Feb 23;15(1):1668 [PMID: 38395981]
  23. FEMS Microbiol Ecol. 2021 Dec 17;97(12): [PMID: 34849757]
  24. New Phytol. 2001 Mar;149(3):509-518 [PMID: 33873330]
  25. Sci Rep. 2020 May 26;10(1):8692 [PMID: 32457320]
  26. Environ Microbiol. 1999 Feb;1(1):9-13 [PMID: 11207713]
  27. Int J Syst Evol Microbiol. 2013 Oct;63(Pt 10):3777-3781 [PMID: 23667138]
  28. Front Microbiol. 2019 Jul 17;10:1571 [PMID: 31379764]
  29. BMC Bioinformatics. 2012 Jun 21;13:141 [PMID: 22720753]
  30. Int J Syst Evol Microbiol. 2015 Jul;65(7):2227-2233 [PMID: 26231539]
  31. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  32. Biology (Basel). 2020 Sep 13;9(9): [PMID: 32933123]
  33. Int J Mol Sci. 2022 Aug 08;23(15): [PMID: 35955951]
  34. Front Microbiol. 2020 Oct 09;11:542742 [PMID: 33162946]
  35. Mar Drugs. 2016 Feb 18;14(2): [PMID: 26901206]
  36. ISME J. 2011 Oct;5(10):1571-9 [PMID: 21472016]
  37. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  38. Plant J. 2022 Apr;110(2):572-588 [PMID: 35106855]
  39. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  40. Front Bioeng Biotechnol. 2021 Sep 29;9:713639 [PMID: 34660550]
  41. Nat Commun. 2022 Jun 16;13(1):3228 [PMID: 35710629]
  42. BMC Plant Biol. 2014 Mar 21;14:69 [PMID: 24649917]
  43. Biomolecules. 2020 Apr 16;10(4): [PMID: 32316239]
  44. Front Microbiol. 2018 Jul 23;9:1620 [PMID: 30083141]
  45. Sci Total Environ. 2019 Mar 10;655:899-907 [PMID: 30481716]
  46. Trends Plant Sci. 2018 Jan;23(1):25-41 [PMID: 29050989]
  47. Genome Biol Evol. 2015 May 20;7(6):1628-43 [PMID: 25994932]
  48. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  49. BMC Bioinformatics. 2012 Feb 14;13:31 [PMID: 22333067]
  50. PeerJ. 2022 May 31;10:e13405 [PMID: 35669957]
  51. Int J Syst Evol Microbiol. 2014 Jan;64(Pt 1):158-164 [PMID: 24048869]
  52. Genome Res. 2008 May;18(5):821-9 [PMID: 18349386]
  53. Ecol Lett. 2008 Mar;11(3):296-310 [PMID: 18047587]
  54. Nat Commun. 2020 Apr 9;11(1):1757 [PMID: 32273505]
  55. Environ Int. 2019 Nov;132:105078 [PMID: 31400601]
  56. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  57. PLoS One. 2016 Feb 04;11(2):e0148221 [PMID: 26845770]
  58. Bioinformatics. 2017 Sep 15;33(18):2938-2940 [PMID: 28645171]
  59. BMC Bioinformatics. 2010 Mar 08;11:119 [PMID: 20211023]
  60. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  61. Front Microbiol. 2019 Mar 15;10:495 [PMID: 30930880]
  62. Elife. 2022 Jul 27;11: [PMID: 35894213]
  63. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  64. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]
  65. Nature. 2012 Aug 2;488(7409):86-90 [PMID: 22859206]
  66. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  67. Sci Rep. 2017 Jul 31;7(1):6589 [PMID: 28761145]

Grants

  1. DGAPA-PAPIIT-UNAM IN206824/Universidad Nacional Autónoma de México

MeSH Term

Solanum lycopersicum
Rhizosphere
Microbiota
Soil Microbiology
RNA, Ribosomal, 16S
Bacteria
Plant Roots
Nutrients
Metagenomics
Hydroponics
Biomass

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0plantnutrientmicrobiometomatolow-nutrientconditionstreatmentsproteinfamiliescoreavailabilitymicrobialproductivitySolanumlycopersicumLroothydroponicsbacterialidentifiedacrosscontrolsusing16SrRNAgenesequencingrelativeabundanceshotgunmetagenomicsfertilizerStudiessuggestedreducedenhancesdiversityaroundrootspositivelyimpactingHoweverspecificcontributionsrhizospheremicrobiomesnutrient-poorenvironmentsstillneedbetterunderstoodstudyinvestigatesPlantsgrownsoil-derivedcommunityinoculationshypothesizedlimitationincreaseselectionbeneficialcommunitiescompensatingdeficiencies12 294operationaltaxonomicunitsIncreasedbiomassobservedcomparedsuggestingrolemitigatinglimitationsgeneraLuteolibacterSphingopyxiscorrelatedphenotypictraitsP05presencevalidatedannotated722 677calculatedset48 116sharedassignedbacteria937%eukaryota62%WithinmetagenomeassociatedpathwaysinvolvedpositiveinteractionslikenitrogenfixationLimitedenhancedcontrolledofferingpathreduceuseagricultureRhizosphereinfluencegrowthsettingsreduction

Similar Articles

Cited By