Rhizosphere microbiome influence on tomato growth under low-nutrient settings.
Gerardo Mejia, Angélica Jara-Servin, Cristóbal Hernández-Álvarez, Luis Romero-Chora, Mariana Peimbert, Rocío Cruz-Ortega, Luis D Alcaraz
Author Information
Gerardo Mejia: Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID
Angélica Jara-Servin: Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID
Cristóbal Hernández-Álvarez: Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID
Luis Romero-Chora: Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID
Mariana Peimbert: Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, 05348 Mexico City, Mexico. ORCID
Rocío Cruz-Ortega: Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID
Luis D Alcaraz: Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. ORCID
Studies have suggested that reduced nutrient availability enhances microbial diversity around plant roots, positively impacting plant productivity. However, the specific contributions of rhizosphere microbiomes in nutrient-poor environments still need to be better understood. This study investigates tomato (Solanum lycopersicum L.) root microbiome under low-nutrient conditions. Plants were grown in hydroponics with soil-derived microbial community inoculations. We hypothesized that nutrient limitation would increase the selection of beneficial bacterial communities, compensating for nutrient deficiencies. We identified 12 294 operational taxonomic units across treatments and controls using 16S rRNA gene sequencing. Increased plant biomass was observed in treatments compared to controls, suggesting a role for the microbiome in mitigating nutrient limitations. The relative abundance of genera such as Luteolibacter and Sphingopyxis relative abundance correlated with plant phenotypic traits (P ≤ .05), and their presence was further validated using shotgun metagenomics. We annotated 722 677 protein families and calculated a core set of 48 116 protein families shared across all treatments and assigned them into bacteria (93.7%) and eukaryota (6.2%). Within the core bacterial metagenome, we identified protein families associated with pathways involved in positive plant interactions like the nitrogen fixation. Limited nutrient availability enhanced plant productivity under controlled conditions, offering a path to reduce fertilizer use in agriculture.