An integrated airborne transmission risk assessment model for respiratory viruses: short- and long-range contributions.

Andre Henriques, Wei Jia, Luis Aleixo, Nicolas Mounet, Luca Fontana, Alice Simniceanu, James Devine, Philip Elson, Gabriella Azzopardi, Markus Rognlien, Marco Andreini, Nicola Tarocco, Olivia Keiser, Yuguo Li, Julian W Tang
Author Information
  1. Andre Henriques: CERN (European Organization for Nuclear Research), Geneva, Switzerland. ORCID
  2. Wei Jia: Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China. ORCID
  3. Luis Aleixo: CERN (European Organization for Nuclear Research), Geneva, Switzerland. ORCID
  4. Nicolas Mounet: CERN (European Organization for Nuclear Research), Geneva, Switzerland. ORCID
  5. Luca Fontana: Strategic Health Operations, Operations Support and Logistic, Health Emergencies Programme, World Health Organization, Geneva, Switzerland. ORCID
  6. Alice Simniceanu: Institute of Global Health, University of Geneva, Geneva, Switzerland. ORCID
  7. James Devine: CERN (European Organization for Nuclear Research), Geneva, Switzerland. ORCID
  8. Philip Elson: CERN (European Organization for Nuclear Research), Geneva, Switzerland.
  9. Gabriella Azzopardi: CERN (European Organization for Nuclear Research), Geneva, Switzerland. ORCID
  10. Markus Rognlien: CERN (European Organization for Nuclear Research), Geneva, Switzerland.
  11. Marco Andreini: CERN (European Organization for Nuclear Research), Geneva, Switzerland. ORCID
  12. Nicola Tarocco: CERN (European Organization for Nuclear Research), Geneva, Switzerland. ORCID
  13. Olivia Keiser: Institute of Global Health, University of Geneva, Geneva, Switzerland. ORCID
  14. Yuguo Li: Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China. ORCID
  15. Julian W Tang: Respiratory Sciences, University of Leicester, Leicester, UK. ORCID

Abstract

This study presents an advanced airborne transmission risk assessment model that integrates both short- and long-range routes in the spread of respiratory viruses, building upon the CERN Airborne Model for Indoor Risk Assessment (CAiMIRA) and aligned with the new World Health Organization (WHO) terminology. Thanks to a two-stage exhaled jet approach, the model accurately simulates short-range exposures, thereby improving infection risk predictions across diverse indoor settings. Key findings reveal that in patient wards, the short-range viral dose is 10-fold higher than the long-range component, highlighting the critical role of close proximity interactions. Implementation of FFP2 respirators resulted in a remarkable 13-fold reduction in viral dose, underscoring the effectiveness of personal protective equipment (PPE). Additionally, the model demonstrated that an 8 h exposure in a poorly ventilated office can equate to the risk of a 15 min face-to-face, mask-less interaction, emphasizing the importance of physical distancing and source control. We also found in high-risk or low-occupancy settings, that secondary transmission is driven more by overall epidemic trends than by the presence of individual superspreaders. Monte Carlo simulations across various scenarios, including classrooms and offices, validate the model's robustness in optimizing infection prevention strategies. These findings support targeted interventions for short- and long-range exposure to reduce airborne transmission.

Keywords

References

  1. PNAS Nexus. 2023 May 23;2(5):pgad142 [PMID: 37228510]
  2. Elife. 2021 Apr 16;10: [PMID: 33861198]
  3. Nat Commun. 2024 Apr 25;15(1):3487 [PMID: 38664424]
  4. Epidemiol Infect. 2024 Oct 08;152:e121 [PMID: 39377138]
  5. Environ Int. 2021 Aug;153:106542 [PMID: 33819720]
  6. PLoS One. 2011;6(6):e21481 [PMID: 21731764]
  7. J R Soc Interface. 2019 Jan 31;16(150):20180298 [PMID: 30958176]
  8. Build Environ. 2022 Jul 1;219:109166 [PMID: 35574565]
  9. PLoS Pathog. 2013 Mar;9(3):e1003205 [PMID: 23505369]
  10. Environ Int. 2020 Dec;145:106112 [PMID: 32927282]
  11. Int J Environ Res Public Health. 2020 Feb 24;17(4): [PMID: 32102305]
  12. Indoor Air. 2022 Jan;32(1):e12946 [PMID: 34704625]
  13. Am J Epidemiol. 1983 Oct;118(4):573-82 [PMID: 6637984]
  14. N Engl J Med. 2020 Apr 16;382(16):1564-1567 [PMID: 32182409]
  15. BMJ. 2021 Apr 14;373:n913 [PMID: 33853842]
  16. J R Soc Interface. 2025 Feb;22(223):20240740 [PMID: 39999884]
  17. J Hazard Mater. 2024 Dec 5;480:136040 [PMID: 39368362]
  18. Lancet Microbe. 2023 Aug;4(8):e579-e590 [PMID: 37307844]
  19. Lancet Infect Dis. 2023 May;23(5):556-567 [PMID: 36681084]
  20. JAMA Netw Open. 2022 Aug 1;5(8):e2228008 [PMID: 35994285]
  21. J Pediatric Infect Dis Soc. 2020 Sep 17;9(4):413-415 [PMID: 32706376]
  22. Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2200109119 [PMID: 35763573]
  23. Nat Med. 2022 May;28(5):1031-1041 [PMID: 35361992]
  24. Aerosol Sci Technol. 2021;55(2):142-153 [PMID: 38077296]
  25. Clin Microbiol Infect. 2024 Nov 9;: [PMID: 39522603]
  26. Interface Focus. 2022 Feb 11;12(2):20210076 [PMID: 35261732]
  27. Clin Infect Dis. 2021 Nov 2;73(9):e3042-e3046 [PMID: 33532847]
  28. Indoor Air. 2010 Feb;20(1):2-16 [PMID: 19874402]
  29. Nat Hum Behav. 2020 Dec;4(12):1313-1319 [PMID: 33168955]
  30. J R Soc Interface. 2009 Dec 6;6 Suppl 6:S727-36 [PMID: 19815575]

Grants

  1. 001/World Health Organization
  2. /CERN

MeSH Term

Humans
Risk Assessment
Air Microbiology
COVID-19
SARS-CoV-2
Models, Biological
Respiratory Tract Infections
Personal Protective Equipment
Air Pollution, Indoor

Word Cloud

Created with Highcharts 10.0.0transmissionriskairbornemodellong-rangeassessmentshort-respiratoryCERNAirborneModelIndoorRiskAssessmentshort-rangeinfectionacrosssettingsfindingsviraldoseexposurestudypresentsadvancedintegratesroutesspreadvirusesbuildinguponCAiMIRAalignednewWorldHealthOrganizationWHOterminologyThankstwo-stageexhaledjetapproachaccuratelysimulatesexposurestherebyimprovingpredictionsdiverseindoorKeyrevealpatientwards10-foldhighercomponenthighlightingcriticalrolecloseproximityinteractionsImplementationFFP2respiratorsresultedremarkable13-foldreductionunderscoringeffectivenesspersonalprotectiveequipmentPPEAdditionallydemonstrated8hpoorlyventilatedofficecanequate15minface-to-facemask-lessinteractionemphasizingimportancephysicaldistancingsourcecontrolalsofoundhigh-risklow-occupancysecondarydrivenoverallepidemictrendspresenceindividualsuperspreadersMonteCarlosimulationsvariousscenariosincludingclassroomsofficesvalidatemodel'srobustnessoptimizingpreventionstrategiessupporttargetedinterventionsreduceintegratedviruses:contributionsCOVID-19modellingvirus

Similar Articles

Cited By