The Secondary Resistome of Methicillin-Resistant to ��-Lactam Antibiotics.

Nader Abdelmalek, Sally Waheed Yousief, Martin Saxtorph Bojer, Mosaed Saleh A Alobaidallah, John Elmerdahl Olsen, Bianca Paglietti
Author Information
  1. Nader Abdelmalek: Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
  2. Sally Waheed Yousief: Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
  3. Martin Saxtorph Bojer: Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark. ORCID
  4. Mosaed Saleh A Alobaidallah: Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark. ORCID
  5. John Elmerdahl Olsen: Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark. ORCID
  6. Bianca Paglietti: Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.

Abstract

: Therapeutic strategies for Methicillin-resistant (MRSA) are increasingly limited due to the ability of the pathogen to evade conventional treatments such as vancomycin and daptomycin. This challenge has shifted the focus towards novel strategies, including the resensitization of ��-lactams, which are still used as first-line treatments for Methicillin-susceptible (MSSA). To achieve this, it is essential to identify the secondary resistome associated with the clinically relevant ��-lactam antibiotics. : Transposon-Directed Insertion Site Sequencing (TraDIS) was employed to assess conditional essentiality by analyzing the depletion of mutants from a highly saturated transposon library of MRSA USA300 JE2 exposed to �� minimal inhibitory concentration (MIC) of oxacillin or cefazolin. : TraDIS analysis led to the identification of 52 shared fitness genes involved in ��-lactam resistance that are primarily linked to cell wall metabolism and regulatory systems. Among these, both known resistance factors and novel conditionally essential genes were highlighted. As proof of concept, transposon mutants corresponding to nine genes (, , , , , , , , and ) were grown in the presence of ��-lactam antibiotics and their MICs were determined. All mutants showed significantly reduced resistance to ��-lactam antibiotics. : This comprehensive genome-wide investigation provides novel insights into the resistance mechanisms of ��-lactam antibiotics, and suggests potential therapeutic targets for combination therapies with helper drugs.

Keywords

References

  1. Antimicrob Agents Chemother. 1987 Sep;31(9):1307-11 [PMID: 3499861]
  2. PLoS One. 2014 Feb 12;9(2):e89018 [PMID: 24563689]
  3. PLoS Pathog. 2024 Aug 29;20(8):e1012422 [PMID: 39207957]
  4. J Antimicrob Chemother. 2018 Aug 1;73(8):2030-2033 [PMID: 29718242]
  5. J Bacteriol. 2016 Jan 25;198(7):1123-36 [PMID: 26811319]
  6. Pharmacotherapy. 2017 Mar;37(3):346-360 [PMID: 28035690]
  7. Microb Biotechnol. 2023 Jul;16(7):1456-1474 [PMID: 37178319]
  8. Genome Res. 2020 Feb;30(2):239-249 [PMID: 32051187]
  9. PLoS Pathog. 2020 Jul 24;16(7):e1008672 [PMID: 32706832]
  10. Antibiotics (Basel). 2023 Jun 01;12(6): [PMID: 37370312]
  11. mBio. 2016 Feb 09;7(1):e02070-15 [PMID: 26861022]
  12. Curr Opin Microbiol. 2013 Oct;16(5):538-48 [PMID: 23895826]
  13. Int J Med Microbiol. 2014 Mar;304(2):150-5 [PMID: 24462007]
  14. Antibiotics (Basel). 2023 Aug 24;12(9): [PMID: 37760659]
  15. FEMS Microbiol Lett. 2001 Sep 11;203(1):49-54 [PMID: 11557139]
  16. Bioinformatics. 2016 Apr 1;32(7):1109-11 [PMID: 26794317]
  17. J Mol Biol. 2008 Mar 21;377(2):410-20 [PMID: 18272173]
  18. Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2118262119 [PMID: 35858453]
  19. Front Cell Infect Microbiol. 2021 May 17;11:684515 [PMID: 34079770]
  20. Nat Microbiol. 2020 Feb;5(2):291-303 [PMID: 31932712]
  21. PLoS Pathog. 2019 Nov 18;15(11):e1007862 [PMID: 31738809]
  22. Lancet. 2024 Sep 28;404(10459):1199-1226 [PMID: 39299261]
  23. ACS Infect Dis. 2020 Jul 10;6(7):1866-1881 [PMID: 32343547]
  24. J Adv Res. 2019 Oct 12;21:169-176 [PMID: 32071785]
  25. Nat Microbiol. 2021 Jan;6(1):34-43 [PMID: 33168989]
  26. Trends Microbiol. 2019 Jan;27(1):26-38 [PMID: 30031590]
  27. Sci Rep. 2024 Oct 1;14(1):22831 [PMID: 39354068]
  28. mBio. 2013 Feb 12;4(1):e00537-12 [PMID: 23404398]
  29. Front Microbiol. 2016 Dec 19;7:2018 [PMID: 28066345]
  30. mSystems. 2024 Jul 23;9(7):e0128923 [PMID: 38837392]
  31. J Proteome Res. 2014 Mar 7;13(3):1223-33 [PMID: 24156611]
  32. Sci Rep. 2018 Feb 1;8(1):2195 [PMID: 29391580]
  33. mBio. 2023 Feb 28;14(1):e0247822 [PMID: 36507833]
  34. Lancet Reg Health West Pac. 2024 May 08;46:101078 [PMID: 38745974]
  35. Antibiotics (Basel). 2024 Jan 23;13(2): [PMID: 38391498]
  36. mBio. 2019 Nov 26;10(6): [PMID: 31772059]
  37. Antimicrob Agents Chemother. 2024 Aug 7;68(8):e0045224 [PMID: 38940570]
  38. Antimicrob Agents Chemother. 2018 May 25;62(6): [PMID: 29555636]
  39. Front Microbiol. 2019 Mar 11;10:339 [PMID: 30915038]
  40. J Antimicrob Chemother. 2018 Oct 1;73(10):2643-2651 [PMID: 30085140]
  41. J Biomed Sci. 2022 May 7;29(1):28 [PMID: 35524246]
  42. FEBS J. 2021 Oct;288(20):6019-6034 [PMID: 33955674]
  43. Int J Antimicrob Agents. 2003 Mar;21(3):256-61 [PMID: 12636988]
  44. J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):155-76 [PMID: 26739136]
  45. Mol Microbiol. 2020 Apr;113(4):699-717 [PMID: 31770461]
  46. Cell Genom. 2022 Nov 9;2(11): [PMID: 36465278]
  47. Antimicrob Agents Chemother. 2019 Sep 30;63(12): [PMID: 31570396]
  48. PLoS One. 2015 May 12;10(5):e0126118 [PMID: 25965381]
  49. Emerg Microbes Infect. 2019;8(1):503-515 [PMID: 30924407]
  50. Antibiotics (Basel). 2022 Feb 16;11(2): [PMID: 35203858]
  51. Nat Rev Genet. 2020 Sep;21(9):526-540 [PMID: 32533119]
  52. Antimicrob Agents Chemother. 2013 Jan;57(1):83-95 [PMID: 23070169]
  53. Chem Rev. 2021 Mar 24;121(6):3412-3463 [PMID: 33373523]
  54. Antimicrob Agents Chemother. 2015 Mar;59(3):1512-8 [PMID: 25534736]
  55. Nat Ecol Evol. 2021 Sep;5(9):1233-1242 [PMID: 34312522]
  56. Sci Rep. 2017 Feb 15;7:42483 [PMID: 28198411]
  57. mBio. 2016 Aug 16;7(4): [PMID: 27531908]

Grants

  1. 956154/European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement

Word Cloud

Created with Highcharts 10.0.0��-lactamresistance:antibioticsnovelTraDISmutantsgenesstrategiesMRSAtreatmentsessentialsecondaryresistometransposonTherapeuticmethicillin-resistantincreasinglylimiteddueabilitypathogenevadeconventionalvancomycindaptomycinchallengeshiftedfocustowardsincludingresensitization��-lactamsstillusedfirst-linemethicillin-susceptibleMSSAachieveidentifyassociatedclinicallyrelevantTransposon-DirectedInsertionSiteSequencingemployedassessconditionalessentialityanalyzingdepletionhighlysaturatedlibraryUSA300JE2exposed��minimalinhibitoryconcentrationMICoxacillincefazolinanalysisledidentification52sharedfitnessinvolvedprimarilylinkedcellwallmetabolismregulatorysystemsAmongknownfactorsconditionallyhighlightedproofconceptcorrespondingninegrownpresenceMICsdeterminedshowedsignificantlyreducedcomprehensivegenome-wideinvestigationprovidesinsightsmechanismssuggestspotentialtherapeutictargetscombinationtherapieshelperdrugsSecondaryResistomeMethicillin-Resistant��-LactamAntibioticsStaphylococcusaureus

Similar Articles

Cited By

No available data.