Sex-Specific Analysis of Carotid Artery Through Bilateral 3D Modeling via MRI and DICOM Processing.

Pedro Martinez, Jose Roberto Torres, Daniel Conde, Manuel Gomez, Alvaro N Gurovich
Author Information
  1. Pedro Martinez: Clinical Applied Physiology (CAPh) Lab, The University of Texas at El Paso, El Paso, TX 79968, USA.
  2. Jose Roberto Torres: Aerospace Engineering MS Program, New Mexico State University, Las Cruces, NM 88003, USA.
  3. Daniel Conde: Clinical Applied Physiology (CAPh) Lab, The University of Texas at El Paso, El Paso, TX 79968, USA. ORCID
  4. Manuel Gomez: Clinical Applied Physiology (CAPh) Lab, The University of Texas at El Paso, El Paso, TX 79968, USA. ORCID
  5. Alvaro N Gurovich: Clinical Applied Physiology (CAPh) Lab, The University of Texas at El Paso, El Paso, TX 79968, USA. ORCID

Abstract

The present study explores the anatomical differences between sexes of the carotid artery using non-invasive magnetic resonance imaging (MRI) and a DICOM processing protocol. Bilateral three-dimensional models of the carotid artery were constructed for 20 healthy young adults, 10 males and 10 females, in order to evaluate key anatomical landmarks; these include the bifurcation diameter and angle, as well as the internal and external carotid arteries (ICA and ECA) for both sides (left and right). The results show that males exhibit larger bifurcation and ECA diameters, which could indicate reduced endothelial shear stress (ESS). However, as there is no previously observed sex difference in ESS between sexes, compensatory factors might be in play, such as blood pressure. This underscores the interaction between vascular geometry and stroke risk disparities; future research is encouraged to analyze diverse demographics and employ flow modeling techniques to further asses the connection between anatomical differences within a given population and vascular outcomes.

Keywords

References

  1. AJR Am J Roentgenol. 2009 Mar;192(3):662-75 [PMID: 19234262]
  2. Stroke. 2005 Nov;36(11):2450-6 [PMID: 16224089]
  3. Eur Heart J. 2016 Oct 21;37(40):3090-3095 [PMID: 26957421]
  4. Stroke. 2001 Jul;32(7):1525-31 [PMID: 11441196]
  5. Circulation. 2006 Jun 13;113(23):2744-53 [PMID: 16754802]
  6. Glob J Health Sci. 2012 Jan 01;4(1):65-93 [PMID: 22980117]
  7. Front Physiol. 2022 May 10;13:857816 [PMID: 35620608]
  8. J Biomech. 2007;40(11):2483-91 [PMID: 17196211]
  9. J Magn Reson Imaging. 2021 Aug;54(2):646-654 [PMID: 33638575]
  10. Circulation. 2022 Feb 22;145(8):e153-e639 [PMID: 35078371]
  11. Circulation. 2002 Mar 5;105(9):1135-43 [PMID: 11877368]
  12. Stroke. 2012 Jun;43(6):1596-601 [PMID: 22511010]
  13. J Am Coll Cardiol. 2011 Aug 23;58(9):907-14 [PMID: 21851878]
  14. Lancet. 2006 May 6;367(9521):1503-12 [PMID: 16679163]
  15. Magn Reson Imaging. 2012 Nov;30(9):1323-41 [PMID: 22770690]
  16. NCHS Data Brief. 2024 Aug;(505): [PMID: 39302269]
  17. Clin Neurol Neurosurg. 2024 Feb;237:108153 [PMID: 38350174]
  18. Pathol Res Pract. 2002;198(8):543-51 [PMID: 12389998]
  19. Stroke. 2002 Jun;33(6):1522-9 [PMID: 12052985]
  20. Stroke. 2006 Apr;37(4):1103-5 [PMID: 16497983]
  21. Clin Physiol Funct Imaging. 2021 Nov;41(6):471-479 [PMID: 34275183]
  22. J Clin Med. 2024 Jun 04;13(11): [PMID: 38893027]
  23. J Cardiovasc Magn Reson. 2011 Mar 09;13:19 [PMID: 21388544]
  24. Clin Hypertens. 2017 Aug 22;23:17 [PMID: 28852570]
  25. Nat Clin Pract Cardiovasc Med. 2009 Jan;6(1):16-26 [PMID: 19029993]
  26. AJNR Am J Neuroradiol. 2008 Nov;29(10):1847-54 [PMID: 18768727]
  27. Int J Cardiol Heart Vasc. 2020 Nov 30;31:100677 [PMID: 33304989]
  28. Korean J Radiol. 2019 Feb;20(2):265-274 [PMID: 30672166]
  29. Stroke. 2008 Aug;39(8):2237-48 [PMID: 18556586]

Grants

  1. SC2 GM140952/NIGMS NIH HHS
  2. 1SC2GM140952-01A1/NIH HHS

Word Cloud

Similar Articles

Cited By