Diet Diversification in Larvae: The Impact of Dandelion on Nutritional and Bioactive Profiles for Targeted Farming Goals.

Aleksandra Trajkovi��, Danka Dragojlovi��, Gordana Stojanovi��, Ivana Zlatanovi�� ��ai��, Milenko Risti��, Marijana Ili�� Milo��evi��, Sa��a S Stankovi��, Vladimir ��iki��, Nata��a Jokovi��
Author Information
  1. Aleksandra Trajkovi��: Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Ni��, Vi��egradska 33, 18000 Ni��, Serbia. ORCID
  2. Danka Dragojlovi��: Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
  3. Gordana Stojanovi��: Department of Chemistry, Faculty of Sciences and Mathematics, University of Ni��, Vi��egradska 33, 18000 Ni��, Serbia. ORCID
  4. Ivana Zlatanovi�� ��ai��: Department of Chemistry, Faculty of Sciences and Mathematics, University of Ni��, Vi��egradska 33, 18000 Ni��, Serbia. ORCID
  5. Milenko Risti��: Department of Chemistry, Faculty of Sciences and Mathematics, University of Pri��tina in Kosovska Mitrovica, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia.
  6. Marijana Ili�� Milo��evi��: Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Ni��, Vi��egradska 33, 18000 Ni��, Serbia.
  7. Sa��a S Stankovi��: Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Ni��, Vi��egradska 33, 18000 Ni��, Serbia.
  8. Vladimir ��iki��: Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Ni��, Vi��egradska 33, 18000 Ni��, Serbia.
  9. Nata��a Jokovi��: Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Ni��, Vi��egradska 33, 18000 Ni��, Serbia. ORCID

Abstract

The domesticated silkworm, , reared for sericulture, has gained attention as a promising, sustainable protein source. While studies have focused on pupal powders obtained through natural or artificial mulberry-based diets, this research builds on ethnoentomological knowledge of the use of dandelion as a short-term mulberry substitute, in a mixed mulberry-dandelion diet throughout larval development. Through proximate analyses, amino acid and fatty acid profiling, mineral and carbohydrate composition, as well as antioxidant activity assays, we investigated how dietary variation affects larvae. The mixed diet achieved a distinct nutritional profile, increasing total amino acids to 38.40 g/100 g compared to 32.37 g/100 g in the mulberry-only group, with differences in the content of essential amino acids like isoleucine (2.24 vs. 1.42 g/100 g) and phenylalanine (3.34 vs. 2.82 g/100 g). It also elevated linolenic acid to 74.33% of total fatty acids and introduced sorbitol (13.35 mg/g). Those two compounds were not detected in the larvae reared on a single-plant diet. HPLC-DAD analysis revealed phenolic acids, flavonoids, and riboflavin in both groups, which may serve as potential carriers of antioxidant activity. These preliminary findings demonstrate how dietary modifications can change nutritional profiles and antioxidant properties of . At the same time, they lay the foundation for further research to fully understand diet-induced effects in edible insects.

Keywords

References

  1. Biomed Chromatogr. 2006 Dec;20(12):1295-303 [PMID: 16977588]
  2. Food Sci Nutr. 2020 May 16;8(6):2652-2661 [PMID: 32566182]
  3. Biomolecules. 2022 Nov 29;12(12): [PMID: 36551203]
  4. Foods. 2023 Feb 07;12(4): [PMID: 36832792]
  5. Insects. 2020 Nov 30;11(12): [PMID: 33266201]
  6. Biomater Sci. 2022 Sep 27;10(19):5731-5743 [PMID: 36039890]
  7. Food Sci Nutr. 2023 Sep 01;11(11):7255-7263 [PMID: 37970431]
  8. Psychol Res. 2019 Sep;83(6):1097-1106 [PMID: 29255945]
  9. Foods. 2021 Apr 03;10(4): [PMID: 33916741]
  10. Nutrients. 2024 Jul 08;16(13): [PMID: 38999911]
  11. Front Insect Sci. 2024 Sep 17;4:1445636 [PMID: 39355451]
  12. Am J Clin Nutr. 2000 Oct;72(4):905-11 [PMID: 11010930]
  13. Molecules. 2017 Nov 16;22(11): [PMID: 29144423]
  14. Nutr J. 2021 Jan 29;20(1):11 [PMID: 33514378]
  15. Insects. 2022 Jul 17;13(7): [PMID: 35886820]
  16. Plants (Basel). 2022 Mar 02;11(5): [PMID: 35270150]
  17. Sci Rep. 2017 Sep 8;7(1):10972 [PMID: 28887546]
  18. Vet Med Nauki. 1981;18(7):105-10 [PMID: 7344277]
  19. Food Res Int. 2022 Oct;160:111679 [PMID: 36076388]
  20. Front Nutr. 2024 Jun 05;11:1404489 [PMID: 38903626]
  21. Insect Biochem Mol Biol. 2005 Nov;35(11):1284-92 [PMID: 16203209]
  22. Adv Food Nutr Res. 2022;101:129-152 [PMID: 35940702]
  23. J Agric Food Chem. 2012 Sep 26;60(38):9589-94 [PMID: 22950760]
  24. Food Chem Toxicol. 2024 Jun;188:114683 [PMID: 38670304]
  25. Int J Biol Macromol. 2023 Oct 1;250:126067 [PMID: 37524279]
  26. Antioxidants (Basel). 2019 Aug 22;8(9): [PMID: 31443517]
  27. Mini Rev Med Chem. 2013 Feb;13(2):201-10 [PMID: 23278117]
  28. J Biol Chem. 2003 Aug 15;278(33):31426-33 [PMID: 12775726]
  29. J Insect Sci. 2014 Jan 01;14: [PMID: 25502023]
  30. Biomed Res Int. 2015;2015:519830 [PMID: 25789320]
  31. Food Sci Nutr. 2021 Jun 29;9(8):4655-4665 [PMID: 34401111]
  32. Br J Nutr. 2022 Nov 28;128(10):1887-1895 [PMID: 35115064]
  33. Poult Sci. 2018 Apr 1;97(4):1189-1198 [PMID: 29340638]
  34. Foods. 2022 May 28;11(11): [PMID: 35681343]
  35. Neotrop Entomol. 2009 May-Jun;38(3):327-31 [PMID: 19618047]
  36. Front Nutr. 2023 Mar 01;10:1133342 [PMID: 36937358]
  37. Metabolites. 2023 Mar 24;13(4): [PMID: 37110125]
  38. PeerJ. 2019 Jun 12;7:e6723 [PMID: 31223520]
  39. Am J Clin Nutr. 2014 Jul;100 Suppl 1:443S-8S [PMID: 24898228]
  40. Crit Rev Food Sci Nutr. 2022;62(9):2548-2559 [PMID: 33290094]
  41. Molecules. 2023 Jun 27;28(13): [PMID: 37446683]
  42. Animals (Basel). 2022 May 17;12(10): [PMID: 35625124]

Word Cloud

Created with Highcharts 10.0.0acidsg/100gdietaminoacidantioxidantnutritionalsilkwormrearedresearchmulberrymixedfattyactivitydietarylarvaeprofiletotal2vscompoundsdomesticatedsericulturegainedattentionpromisingsustainableproteinsourcestudiesfocusedpupalpowdersobtainednaturalartificialmulberry-baseddietsbuildsethnoentomologicalknowledgeusedandelionshort-termsubstitutemulberry-dandelionthroughoutlarvaldevelopmentproximateanalysesprofilingmineralcarbohydratecompositionwellassaysinvestigatedvariationaffectsachieveddistinctincreasing3840compared3237mulberry-onlygroupdifferencescontentessentiallikeisoleucine24142phenylalanine33482alsoelevatedlinolenic7433%introducedsorbitol1335mg/gtwodetectedsingle-plantHPLC-DADanalysisrevealedphenolicflavonoidsriboflavingroupsmayservepotentialcarrierspreliminaryfindingsdemonstratemodificationscanchangeprofilespropertiestimelayfoundationfullyunderstanddiet-inducedeffectsedibleinsectsDietDiversificationLarvae:ImpactDandelionNutritionalBioactiveProfilesTargetedFarmingGoalsTaraxacumofficinalebioactiveleaves

Similar Articles

Cited By

No available data.