Exploring Bacterial Communities and Functions in Phytophagous and Predatory .

Hongmei Cheng, Xiaoyu Yan, Changjin Lin, Yu Chen, Le Ma, Luyao Fu, Xiaolin Dong, Chenxi Liu
Author Information
  1. Hongmei Cheng: Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
  2. Xiaoyu Yan: Department of Entomology, Yangtze University, Jingzhou 434023, China.
  3. Changjin Lin: Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
  4. Yu Chen: Department of Entomology, Yangtze University, Jingzhou 434023, China.
  5. Le Ma: Department of Entomology, Yangtze University, Jingzhou 434023, China.
  6. Luyao Fu: Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
  7. Xiaolin Dong: Department of Entomology, Yangtze University, Jingzhou 434023, China. ORCID
  8. Chenxi Liu: Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. ORCID

Abstract

The phytophagous (Hemiptera: Pentatomidae) is a global agricultural pest that damages many crops. Conversely, the predatory (Hemiptera: Pentatomidae) shows promise as a biological control agent against lepidopteran and coleopteran pests. and are closely related species with different feeding habits, as confirmed via genomic and morphological analyses. However, no study investigating the implications of these differences has been reported. Herein, 16S rRNA sequencing technology was employed to analyze the microbiota diversity and function in different tissues (salivary glands, gut, sperm, and ovaries) of and to elucidate these differences from a microbial perspective. Additionally, the adult male-to-female ratio in organs was statistically similar, while that in was not. Based on the dominance of the symbionts in the two bug species, we inferred that is involved in reproduction and digestion in , while and play essential roles in reproduction and digestion. We analyzed the data on the microbial diversity of two bug species, laying a foundation for further understanding microbial symbiosis in and , which may inform the development of biological control strategies.

Keywords

References

  1. Genome Biol Evol. 2011;3:195-208 [PMID: 21266540]
  2. Insects. 2015 Apr 14;6(2):352-67 [PMID: 26463190]
  3. Nat Commun. 2020 Jun 11;11(1):2964 [PMID: 32528063]
  4. Front Microbiol. 2021 Jun 11;12:668644 [PMID: 34177846]
  5. Microb Ecol. 2016 Oct;72(3):725-9 [PMID: 27423980]
  6. PLoS One. 2014 Sep 12;9(9):e106988 [PMID: 25215866]
  7. Genome Biol Evol. 2018 Sep 1;10(9):2178-2189 [PMID: 30102395]
  8. Proc Biol Sci. 2014 Dec 7;281(1796):20141838 [PMID: 25339726]
  9. ISME J. 2023 Nov;17(11):1798-1807 [PMID: 37660231]
  10. Sci Rep. 2017 Jan 23;7:40271 [PMID: 28112158]
  11. ISME J. 2010 Feb;4(2):242-52 [PMID: 19907504]
  12. Evolution. 2008 May;62(5):997-1012 [PMID: 18298649]
  13. Curr Microbiol. 2021 May;78(5):1778-1791 [PMID: 33704532]
  14. Sci Rep. 2017 Jul 5;7(1):4699 [PMID: 28680117]
  15. Front Microbiol. 2022 Oct 24;13:1044771 [PMID: 36353457]
  16. Nat Rev Microbiol. 2020 Feb;18(2):97-111 [PMID: 31907461]
  17. Appl Environ Microbiol. 2014 Jun;80(12):3769-75 [PMID: 24727277]
  18. PLoS Negl Trop Dis. 2018 Sep 13;12(9):e0006739 [PMID: 30212460]
  19. Front Microbiol. 2023 Nov 30;14:1284397 [PMID: 38098653]
  20. Elife. 2014 Jul 15;3:e02964 [PMID: 25027439]
  21. Ecol Evol. 2024 Sep 22;14(9):e70320 [PMID: 39310734]
  22. Trends Microbiol. 2017 May;25(5):375-390 [PMID: 28336178]
  23. Curr Biol. 2020 May 18;30(10):1949-1957.e6 [PMID: 32243856]
  24. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  25. Pest Manag Sci. 2022 Oct;78(10):4353-4360 [PMID: 35775398]
  26. Sci Data. 2024 Sep 4;11(1):962 [PMID: 39232013]
  27. Cladistics. 2022 Aug;38(4):403-428 [PMID: 35349192]
  28. J Insect Physiol. 2014 Oct;69:12-8 [PMID: 24862156]
  29. Microb Ecol. 2023 Nov;86(4):2923-2933 [PMID: 37658881]
  30. J Evol Biol. 2015 Oct;28(10):1753-60 [PMID: 26206380]
  31. Appl Environ Microbiol. 2019 May 2;85(10): [PMID: 30850430]
  32. Gut Microbes. 2023 Jan-Dec;15(1):2208503 [PMID: 37129195]
  33. Curr Opin Insect Sci. 2020 Jun;39:6-13 [PMID: 32078985]
  34. Genes (Basel). 2021 Aug 25;12(9): [PMID: 34573288]
  35. PLoS One. 2014 Mar 05;9(3):e90312 [PMID: 24598598]
  36. Insects. 2022 Apr 11;13(4): [PMID: 35447818]
  37. Nat Rev Genet. 2006 Jun;7(6):427-35 [PMID: 16682981]
  38. J Econ Entomol. 2021 Aug 5;114(4):1733-1742 [PMID: 34224560]
  39. Environ Entomol. 2014 Jun;43(3):617-25 [PMID: 24874153]
  40. Biology (Basel). 2022 Jul 11;11(7): [PMID: 36101420]
  41. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1803-7 [PMID: 12563031]
  42. Front Microbiol. 2022 Jan 27;13:805352 [PMID: 35154053]
  43. BMC Microbiol. 2018 Nov 23;18(Suppl 1):169 [PMID: 30470198]
  44. Curr Biol. 2020 Aug 3;30(15):2875-2886.e4 [PMID: 32502409]
  45. Parasit Vectors. 2023 Jun 10;16(1):196 [PMID: 37301969]
  46. Microbiome. 2020 Mar 16;8(1):38 [PMID: 32178739]
  47. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  48. Microb Ecol. 2023 Aug;86(2):1213-1225 [PMID: 36138209]
  49. Int J Mol Sci. 2025 Jan 15;26(2): [PMID: 39859405]
  50. Curr Opin Insect Sci. 2019 Apr;32:36-41 [PMID: 31113629]
  51. Annu Rev Entomol. 2015 Jan 7;60:17-34 [PMID: 25341109]
  52. Nat Rev Microbiol. 2016 Dec;14(12):731-743 [PMID: 27795568]
  53. Appl Environ Microbiol. 2020 Jun 2;86(12): [PMID: 32276978]
  54. Proc Biol Sci. 2017 Sep 13;284(1862): [PMID: 28878063]
  55. iScience. 2024 Jun 28;27(8):110411 [PMID: 39108731]
  56. Insect Sci. 2017 Dec;24(6):910-928 [PMID: 28371395]
  57. Ecol Evol. 2022 Apr 12;12(4):e8823 [PMID: 35432934]
  58. ISME J. 2023 Aug;17(8):1143-1152 [PMID: 37231184]
  59. Annu Rev Entomol. 2024 Jan 25;69:117-137 [PMID: 37585608]
  60. Microbiologyopen. 2022 Dec;11(6):e1337 [PMID: 36479626]
  61. FEMS Microbiol Ecol. 2022 Feb 21;98(1): [PMID: 35142841]
  62. Biology (Basel). 2021 Nov 10;10(11): [PMID: 34827154]
  63. BMC Genomics. 2020 Mar 14;21(1):227 [PMID: 32171258]
  64. Trends Microbiol. 2022 Jan;30(1):79-96 [PMID: 34103228]
  65. PLoS One. 2016 Aug 17;11(8):e0161118 [PMID: 27532606]
  66. Proc Biol Sci. 2020 May 13;287(1926):20200302 [PMID: 32345169]
  67. Appl Environ Microbiol. 2007 Oct;73(20):6660-8 [PMID: 17766458]
  68. ISME J. 2024 Jan 8;18(1): [PMID: 38861456]
  69. PLoS One. 2014 Feb 26;9(2):e88483 [PMID: 24586332]
  70. Mol Biol Evol. 2015 Aug;32(8):1977-80 [PMID: 25851957]
  71. Insects. 2020 Nov 05;11(11): [PMID: 33167448]
  72. Front Immunol. 2023 Dec 18;14:1272143 [PMID: 38193088]
  73. Zoological Lett. 2016 Nov 30;2:24 [PMID: 27980805]
  74. R Soc Open Sci. 2024 Sep 11;11(9):240734 [PMID: 39309259]
  75. mSystems. 2020 Mar 17;5(2): [PMID: 32184361]
  76. iScience. 2022 Apr 29;25(5):104335 [PMID: 35602967]
  77. FEMS Microbiol Rev. 2013 Sep;37(5):699-735 [PMID: 23692388]
  78. Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2417873121 [PMID: 39793111]
  79. Appl Environ Microbiol. 2023 May 31;89(5):e0009923 [PMID: 37154737]

Grants

  1. 59-0212-9-001-F/Agricultural Research Service

Word Cloud

Created with Highcharts 10.0.0biologicalcontrolspeciesmicrobialreproductiondigestionHemiptera:PentatomidaedifferentfeedingdifferencesmicrobiotadiversitytwobugphytophagousglobalagriculturalpestdamagesmanycropsConverselypredatoryshowspromiseagentlepidopterancoleopteranpestscloselyrelatedhabitsconfirmedviagenomicmorphologicalanalysesHoweverstudyinvestigatingimplicationsreportedHerein16SrRNAsequencingtechnologyemployedanalyzefunctiontissuessalivaryglandsgutspermovarieselucidateperspectiveAdditionallyadultmale-to-femaleratioorgansstatisticallysimilarBaseddominancesymbiontsinferredinvolvedplayessentialrolesanalyzeddatalayingfoundationunderstandingsymbiosismayinformdevelopmentstrategiesExploringBacterialCommunitiesFunctionsPhytophagousPredatorycomposition

Similar Articles

Cited By