This review describes the process of metal additive manufacturing and focuses on the possibility of correlated input parameters that are important for this process. The correlation of individual parameters in the metal additive manufacturing process is considered using simulation tools that allow the prediction of various defects, thus making the real production process more efficient, especially in terms of time and costs. Special attention is paid to multiple applications using these simulation tools as an initial analysis to determine the material's behavior when defining various input factors, including the results obtained. Based on this, further procedures were implemented, including real production parts. This review also points out the range of possible variations that simulation tools have, which helps to effectively predict material defects and determine the volume of consumed material, supports construction risk, and other information necessary to obtain a quality part in the production process. From the overview of the application of simulation tools in this process, it was found that the correlation between theoretical knowledge and the definition of individual process parameters and other variables are related and are of fundamental importance for achieving the final part with the required properties. In terms of some specific findings, it can be noted that simulation tools identify adverse phenomena occurring in the production processes and allow manufacturers to test the validity of the proposed conceptual and model solutions without making actual changes in the production system, and they have the measurable impact on the design and production of quality parts.