Association of the PhoQ/PhoP Stress Response System with the Internalization of O157:H7 in Romaine Lettuce.

Fnu Chenggeer, Guolu Zheng, Azlin Mustapha
Author Information
  1. Fnu Chenggeer: Food Science Program, University of Missouri, Columbia, MO 65211, USA.
  2. Guolu Zheng: Cooperative Research Program, Lincoln University, Jefferson City, MO 65102, USA. ORCID
  3. Azlin Mustapha: Food Science Program, University of Missouri, Columbia, MO 65211, USA. ORCID

Abstract

Foodborne illness associated with O157:H7 ( O157) and romaine lettuce is a serious and persistent food safety issue. This study investigated the ability and associated genetic traits of five O157 strains-namely 86-24, 93-111, C7927, MF1847, and 505B-to internalize in romaine lettuce grown in soil and hydroponic systems. The results showed significant variations in the strains' ability to internalize, with soil cultivation being more susceptible to O157 internalization relative to hydroponics. Whole-genome comparisons and an analysis of the five O157 strains revealed insights into the potential genetic traits associated with internalization capacity. A single unique gene, ORF-4296, was found to be present in all four internalizing strains (86-24, 93-111, C7927, and MF1847), but absent in the non-internalizing strain 505B. Immediately downstream of OFR-4296 is the PhoQ/PhoP operon, which regulates the important stress responses of O157. Our data showed that this operon was identical in the four internalizing strains but different in strain 505B. Specifically, the C-terminal of PhoQ in strain 505B had a distinct amino acid sequence. The inability of 505B to internalize may be linked to its lack of ORF-4296 and its distinctive C-terminal sequence of PhoQ.

Keywords

References

  1. PLoS One. 2014 Feb 04;9(2):e87991 [PMID: 24505344]
  2. Int J Food Microbiol. 2009 Nov 15;135(3):238-47 [PMID: 19733930]
  3. Sci Total Environ. 2024 Jun 10;928:172375 [PMID: 38604372]
  4. Appl Environ Microbiol. 1993 Jul;59(7):1999-2006 [PMID: 8357240]
  5. Food Microbiol. 2023 Jun;112:104244 [PMID: 36906298]
  6. Int J Food Microbiol. 2010 Oct 15;143(3):198-204 [PMID: 20864201]
  7. Annu Rev Phytopathol. 2006;44:367-92 [PMID: 16704355]
  8. Emerg Infect Dis. 2020 Oct;26(10):2319-2328 [PMID: 32946367]
  9. J Food Prot. 2014 Jun;77(6):872-9 [PMID: 24853507]
  10. Crit Rev Food Sci Nutr. 2024;64(14):4833-4847 [PMID: 36377729]
  11. Genome Res. 2018 Jul;28(7):1079-1089 [PMID: 29773659]
  12. Int J Food Microbiol. 2009 Aug 31;134(1-2):37-45 [PMID: 19539390]
  13. Int J Food Microbiol. 2014 Feb 03;171:21-31 [PMID: 24296259]
  14. Appl Environ Microbiol. 2008 Sep;74(17):5285-9 [PMID: 18641153]
  15. J Food Prot. 2014 May;77(5):713-21 [PMID: 24780324]
  16. J Food Prot. 2009 Oct;72(10):2028-37 [PMID: 19833024]
  17. Appl Environ Microbiol. 2019 May 16;85(11): [PMID: 30902860]
  18. Crit Rev Microbiol. 2008;34(3-4):143-61 [PMID: 18728991]
  19. Food Microbiol. 2007 Feb;24(1):106-12 [PMID: 16943102]
  20. J Bacteriol. 1999 Dec;181(23):7346-55 [PMID: 10572140]
  21. Foodborne Pathog Dis. 2012 May;9(5):396-405 [PMID: 22458717]
  22. Environ Int. 2019 Jan;122:270-280 [PMID: 30449627]
  23. Appl Environ Microbiol. 2002 Jan;68(1):397-400 [PMID: 11772650]
  24. J Bacteriol. 2000 Jun;182(11):3266-73 [PMID: 10809709]
  25. Food Microbiol. 2016 Aug;57:81-9 [PMID: 27052705]
  26. J Environ Qual. 2018 Sep;47(5):1139-1145 [PMID: 30272803]
  27. J Food Prot. 2010 Oct;73(10):1809-16 [PMID: 21067668]
  28. J Food Prot. 1999 Jan;62(1):3-9 [PMID: 9921820]
  29. Int J Environ Res Public Health. 2019 Nov 11;16(22): [PMID: 31717976]
  30. Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10792-E10798 [PMID: 29183977]
  31. Int J Food Microbiol. 2017 Sep 18;257:238-246 [PMID: 28697385]

Grants

  1. 2020-67018-30784/United States Department of Agriculture
  2. None/University of Missouri

Word Cloud

Similar Articles

Cited By