In Silico Approach for Antibacterial Discovery: PTML Modeling of Virtual Multi-Strain Inhibitors Against .

Valeria V Kleandrova, M Nat��lia D S Cordeiro, Alejandro Speck-Planche
Author Information
  1. Valeria V Kleandrova: LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal. ORCID
  2. M Nat��lia D S Cordeiro: LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal. ORCID
  3. Alejandro Speck-Planche: LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal. ORCID

Abstract

: Infectious diseases caused by () have become alarming health issues worldwide due to the ever-increasing emergence of multidrug resistance. In silico approaches can accelerate the identification and/or design of versatile antibacterial chemicals with the ability to target multiple strains with varying degrees of drug resistance. Here, we develop a perturbation theory machine learning model based on a multilayer perceptron neural network (PTML-MLP) for the prediction and design of versatile virtual inhibitors against strains. : To develop the PTML-MLP model, chemical and biological data associated with antibacterial activity against strains were retrieved from the ChEMBL database. We applied the Box-Jenkins approach to convert the topological indices into multi-label graph-theoretical indices; the latter were used as inputs for the creation of the PTML-MLP model. : The PTML-MLP model exhibited accuracy higher than 80% in both training and test sets. The physicochemical and structural interpretation of the PTML-MLP model was performed through the fragment-based topological design (FBTD) approach. Such interpretations permitted the analysis of different molecular fragments with favorable contributions to the multi-strain antibacterial activity and the design of four new drug-like molecules using different fragments as building blocks. The designed molecules were predicted/confirmed by our PTML model as multi-strain inhibitors of diverse strains, thus representing promising chemotypes to be considered for future synthesis and biological testing of versatile anti- agents. : This work envisages promising applications of PTML modeling for early antibacterial drug discovery and related antimicrobial research areas.

Keywords

References

  1. J Pharm Sci. 1976 Dec;65(12):1806-9 [PMID: 1032667]
  2. ACS Omega. 2022 Aug 29;7(36):32119-32130 [PMID: 36120024]
  3. ACS Chem Neurosci. 2018 Nov 21;9(11):2572-2587 [PMID: 29791132]
  4. Mini Rev Med Chem. 2008 Mar;8(3):213-21 [PMID: 18336341]
  5. J Pharm Sci. 1977 May;66(5):642-4 [PMID: 874744]
  6. J Chem Inf Comput Sci. 2004 Mar-Apr;44(2):688-98 [PMID: 15032551]
  7. Mini Rev Med Chem. 2020;20(14):1357-1374 [PMID: 32013845]
  8. Microorganisms. 2024 Aug 15;12(8): [PMID: 39203524]
  9. Fitoterapia. 2024 Sep;177:106114 [PMID: 38971331]
  10. J Cheminform. 2023 May 21;15(1):54 [PMID: 37211605]
  11. J Chem Inf Comput Sci. 2002 May-Jun;42(3):550-8 [PMID: 12086513]
  12. J Immunol Res. 2014;2014:768515 [PMID: 24741624]
  13. Lancet. 2023 Dec 17;400(10369):2221-2248 [PMID: 36423648]
  14. EBioMedicine. 2024 Apr;102:105073 [PMID: 38520916]
  15. Mol Divers. 2015 May;19(2):305-19 [PMID: 25620721]
  16. J Med Chem. 2002 Jun 6;45(12):2615-23 [PMID: 12036371]
  17. Chem Res Toxicol. 2019 Sep 16;32(9):1811-1823 [PMID: 31327231]
  18. Mol Pharm. 2022 Jul 4;19(7):2151-2163 [PMID: 35671399]
  19. J Mol Graph Model. 2001;20(1):76-83 [PMID: 11760005]
  20. Nanoscale. 2021 Jan 21;13(2):1318-1330 [PMID: 33410431]
  21. BMC Chem. 2025 Jan 2;19(1):2 [PMID: 39748442]
  22. ACS Omega. 2020 Oct 15;5(42):27211-27220 [PMID: 33134682]
  23. Int J Mol Sci. 2020 Feb 05;21(3): [PMID: 32033398]
  24. J Chem Inf Comput Sci. 2000 Jan;40(1):71-80 [PMID: 10661552]
  25. Biomedicines. 2022 Feb 18;10(2): [PMID: 35203699]
  26. Expert Opin Drug Discov. 2023 Jul-Dec;18(11):1231-1243 [PMID: 37639708]
  27. Curr Top Med Chem. 2020;20(19):1661-1676 [PMID: 32515311]
  28. J Comput Aided Mol Des. 2009 Apr;23(4):195-8 [PMID: 19194660]
  29. Mol Pharm. 2019 Oct 7;16(10):4200-4212 [PMID: 31426639]
  30. ACS Chem Neurosci. 2019 Nov 20;10(11):4476-4491 [PMID: 31618004]
  31. Nature. 2023 Apr;616(7958):673-685 [PMID: 37100941]
  32. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
  33. J Chem Inf Model. 2019 Mar 25;59(3):1109-1120 [PMID: 30802402]
  34. Future Med Chem. 2023 Sep;15(18):1647-1650 [PMID: 37728008]
  35. Heliyon. 2024 Sep 06;10(17):e37538 [PMID: 39290291]
  36. Mol Pharm. 2020 Jul 6;17(7):2612-2627 [PMID: 32459098]
  37. Drug Discov Today Technol. 2015 Jul;14:17-24 [PMID: 26194583]
  38. Int J Biol Macromol. 2024 Nov;279(Pt 3):135459 [PMID: 39250989]
  39. Mol Divers. 2017 Aug;21(3):713-718 [PMID: 28567560]
  40. J Chem Inf Model. 2005 Jan-Feb;45(1):177-82 [PMID: 15667143]
  41. Biology (Basel). 2020 Jul 30;9(8): [PMID: 32751710]
  42. Curr Top Med Chem. 2013;13(14):1636-49 [PMID: 23889053]
  43. BMC Chem. 2024 Jan 20;18(1):14 [PMID: 38245752]
  44. BioData Min. 2023 Feb 17;16(1):4 [PMID: 36800973]
  45. RSC Adv. 2024 Oct 1;14(42):30859-30872 [PMID: 39355333]
  46. Nucleic Acids Res. 2019 Jan 8;47(D1):D930-D940 [PMID: 30398643]
  47. J Chem Inf Model. 2022 Dec 12;62(23):5938-5951 [PMID: 36456532]
  48. J Chem Inf Comput Sci. 2001 Jul-Aug;41(4):1015-21 [PMID: 11500118]
  49. Microb Biotechnol. 2023 Jul;16(7):1456-1474 [PMID: 37178319]
  50. Nucleic Acids Res. 2016 Jan 4;44(D1):D1220-8 [PMID: 26582922]
  51. Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7 [PMID: 21948594]
  52. J Pharm Sci. 1981 Jun;70(6):583-9 [PMID: 7252795]
  53. Int J Mol Sci. 2024 Feb 13;25(4): [PMID: 38396934]
  54. J Proteome Res. 2017 Nov 3;16(11):4093-4103 [PMID: 28922600]
  55. J Chem Inf Model. 2022 Aug 22;62(16):3928-3940 [PMID: 35946598]
  56. J Chem Inf Comput Sci. 2000 May;40(3):792-5 [PMID: 10850784]
  57. J Antibiot (Tokyo). 2024 Oct;77(10):665-678 [PMID: 38914797]
  58. Prog Biophys Mol Biol. 1998;70(3):175-222 [PMID: 9830312]
  59. Eur J Med Chem. 2021 Aug 5;220:113458 [PMID: 33901901]
  60. J Comb Chem. 1999 Jan;1(1):55-68 [PMID: 10746014]
  61. Mol Divers. 2015 May;19(2):347-56 [PMID: 25754075]
  62. Nanoscale. 2020 Jul 2;12(25):13471-13483 [PMID: 32613998]
  63. Mol Divers. 2022 Oct;26(5):2523-2534 [PMID: 34802116]
  64. Pharmaceuticals (Basel). 2020 Nov 22;13(11): [PMID: 33266378]
  65. Virulence. 2021 Dec;12(1):547-569 [PMID: 33522395]
  66. Int J Mol Sci. 2024 Sep 06;25(17): [PMID: 39273596]
  67. J Med Chem. 1975 Dec;18(12):1272-4 [PMID: 1238571]
  68. J Chem Inf Model. 2024 Mar 25;64(6):1932-1944 [PMID: 38437501]
  69. Comput Biol Med. 2024 Sep;179:108907 [PMID: 39033680]
  70. Antibiotics (Basel). 2020 Feb 18;9(2): [PMID: 32085586]
  71. ACS Comb Sci. 2018 Nov 12;20(11):621-632 [PMID: 30240186]
  72. J Mol Graph Model. 2006 Nov;25(3):275-88 [PMID: 16487735]

Grants

  1. UIDB/50006/2020/Foundation for Science and Technology/the Ministry of Science, Technology and Higher Education of the Government of Portugal

Word Cloud

Created with Highcharts 10.0.0modeldesignantibacterialPTML-MLP:strainstopologicalPTMLversatileindicesresistancedrugdevelopmultilayerperceptroninhibitorsbiologicalactivityapproachfragment-baseddifferentfragmentsmulti-strainmoleculespromisingInfectiousdiseasescausedbecomealarminghealthissuesworldwidedueever-increasingemergencemultidrugsilicoapproachescanaccelerateidentificationand/orchemicalsabilitytargetmultiplevaryingdegreesperturbationtheorymachinelearningbasedneuralnetworkpredictionvirtualchemicaldataassociatedretrievedChEMBLdatabaseappliedBox-Jenkinsconvertmulti-labelgraph-theoreticallatterusedinputscreationexhibitedaccuracyhigher80%trainingtestsetsphysicochemicalstructuralinterpretationperformedFBTDinterpretationspermittedanalysismolecularfavorablecontributionsfournewdrug-likeusingbuildingblocksdesignedpredicted/confirmeddiversethusrepresentingchemotypesconsideredfuturesynthesistestinganti-agentsworkenvisagesapplicationsmodelingearlydiscoveryrelatedantimicrobialresearchareasSilicoApproachAntibacterialDiscovery:ModelingVirtualMulti-StrainInhibitorsfragmentsubgraph

Similar Articles

Cited By