Drug Loss at Arterial Bends Can Dominate Off-Target Drug Delivery by Paclitaxel-Coated Balloons.

Linnea Tscheuschner, Efstathios Stratakos, Marios Kostakis, Miltiadis Gravanis, Michalis Katsimpoulas, Giancarlo Pennati, Fragiska Sigala, Abraham R Tzafriri
Author Information
  1. Linnea Tscheuschner: Department of Vascular Surgery, National and Kapodistrian University of Athens, 115 27 Athens, Greece.
  2. Efstathios Stratakos: Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20132 Milan, Italy. ORCID
  3. Marios Kostakis: Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 157 72 Athens, Greece. ORCID
  4. Miltiadis Gravanis: Department of Interventional Radiology, General Hospital of Athens "G. Gennimatas", 115 27 Athens, Greece.
  5. Michalis Katsimpoulas: Experimental Surgical Unit, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece. ORCID
  6. Giancarlo Pennati: Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20132 Milan, Italy.
  7. Fragiska Sigala: Department of Vascular Surgery, National and Kapodistrian University of Athens, 115 27 Athens, Greece.
  8. Abraham R Tzafriri: Department of Research and Innovation, CBSET Inc., Lexington, MA 02421, USA. ORCID

Abstract

: paclitaxel-coated balloons (PCBs) can deliver efficacious drug concentrations to treated arterial segments but are known to exhibit high tracking losses. We aimed to define the governing factors impacting tracking loss and to contrast its drug distribution consequences with those of PCB inflation at the treatment site. : Four na��ve and four in-stent restenosis (ISR) porcine superficial femoral arteries (SFA) were treated with PCBs, and plasma samples were collected post-tracking and post-inflation. Animals were sacrificed <1 h post-intervention, and local, upstream, and downstream tissues were collected for paclitaxel quantification. Computationally driven quantitative benchtop-tracking and frictional PCB-sliding experiments modeled paclitaxel loss and delivery to upstream tissue. : paclitaxel concentrations in plasma peaked pre-inflation and declined 30-fold immediately post-inflation. Correspondingly, losses of 30% and 1% of nominal PCB load were measured in vitro during, respectively, tracking over single bend and during device insertion. Mean paclitaxel concentrations were equally high at ISR and na��ve SFA treatment sites (56,984 vs. 79,837 ng/g, > 0.99) and ranged from 9 to 89 ng/g in tissues downstream of these treatment sites. Sampling of non-target upstream iliac artery tissues revealed paclitaxel concentration of 4351 �� 4084 ng/g. Benchtop sliding of PCB samples onto ex vivo porcine artery samples exhibited efficient, pressure independent frictional paclitaxel transfer (124 ��g at 0.05 atm vs 126 ��g at 0.1 atm, > 0.99). : PCB interactions at porcine vessel bends led to premature tracking loss, resulting in peak plasma concentrations exceeding post-inflation concentrations, and delivery to upstream tissue that is plausibly explained as arising from efficient friction-mediated coating transfer.

Keywords

References

  1. Vascular. 2022 Apr;30(2):392-402 [PMID: 33813971]
  2. Front Cardiovasc Med. 2022 Oct 12;9:947776 [PMID: 36312265]
  3. Cardiovasc Interv Ther. 2021 Apr;36(2):158-168 [PMID: 33439454]
  4. Circulation. 2017 Sep 19;136(12):1102-1113 [PMID: 28729250]
  5. Proc Soc Exp Biol Med. 1951 Nov;78(2):544-5 [PMID: 14911946]
  6. Cardiovasc Revasc Med. 2024 Jul 28;: [PMID: 39122570]
  7. Open Heart. 2014 Aug 06;1(1):e000117 [PMID: 25332821]
  8. Invest Radiol. 2011 Apr;46(4):255-63 [PMID: 21285890]
  9. Eur J Vasc Endovasc Surg. 2019 Apr;57(4):578-586 [PMID: 30871939]
  10. Am J Vet Res. 1982 May;43(5):895-7 [PMID: 7091857]
  11. Cardiovasc Intervent Radiol. 2016 Aug;39(8):1152-8 [PMID: 27094691]
  12. Pharmaceutics. 2021 Apr 23;13(5): [PMID: 33922861]
  13. JACC Cardiovasc Interv. 2014 Jan;7(1):10-9 [PMID: 24456716]
  14. Catheter Cardiovasc Interv. 2023 Nov;102(6):969-978 [PMID: 37855186]
  15. Res Rep Urol. 2022 May 06;14:177-183 [PMID: 35572815]
  16. Ann Biomed Eng. 2022 Apr;50(4):467-481 [PMID: 35212855]
  17. Bioeng Transl Med. 2022 Jul 07;8(1):e10370 [PMID: 36684110]
  18. Diagnostics (Basel). 2022 Sep 09;12(9): [PMID: 36140578]
  19. J Mater Chem B. 2021 Mar 17;9(10):2428-2435 [PMID: 33624663]
  20. J Control Release. 2019 Sep 28;310:94-102 [PMID: 31430500]
  21. Cardiovasc Intervent Radiol. 2022 Aug;45(8):1186-1197 [PMID: 35689119]
  22. Int J Pharm. 2022 May 25;620:121749 [PMID: 35427748]
  23. Ann Biomed Eng. 2024 Jun;52(6):1554-1567 [PMID: 38589731]
  24. Catheter Cardiovasc Interv. 2019 Jul 1;94(1):139-148 [PMID: 30838719]
  25. Acta Cir Bras. 2021 Jan 20;35(12):e351208 [PMID: 33503221]
  26. Am J Transplant. 2014 Oct;14(10):2400-5 [PMID: 25055720]
  27. J Drug Deliv. 2019 Jan 8;2019:9560592 [PMID: 30886750]
  28. Catheter Cardiovasc Interv. 2014 Jan 1;83(1):132-40 [PMID: 23703778]
  29. Ann Biomed Eng. 2023 Dec;51(12):2908-2922 [PMID: 37751027]
  30. Ann Biomed Eng. 2025 Mar;53(3):740-757 [PMID: 39665865]
  31. J Vasc Interv Radiol. 2019 Jan;30(1):103-109 [PMID: 30527654]
  32. J Vasc Surg. 1994 May;19(5):905-11 [PMID: 8170046]
  33. J Vasc Interv Radiol. 2015 Sep;26(9):1380-7.e1 [PMID: 26190185]
  34. Respir Med Case Rep. 2018 May 16;24:129-132 [PMID: 29988293]
  35. JACC Basic Transl Sci. 2024 May 01;9(6):774-789 [PMID: 39070273]
  36. Postepy Kardiol Interwencyjnej. 2018;14(1):9-14 [PMID: 29743899]
  37. PLoS One. 2015 Mar 03;10(3):e0116080 [PMID: 25734818]
  38. J Am Heart Assoc. 2018 Dec 18;7(24):e011245 [PMID: 30561254]
  39. Cardiovasc Pathol. 2025 Jan-Feb;74:107688 [PMID: 39179125]
  40. J Vasc Interv Radiol. 2023 Jul;34(7):1166-1175.e2 [PMID: 37003576]
  41. J Endovasc Ther. 2015 Aug;22(4):518-24 [PMID: 26109627]
  42. J Cardiovasc Surg (Torino). 2015 Dec 17;: [PMID: 26681536]
  43. Biomaterials. 2020 Nov;260:120337 [PMID: 32937269]
  44. PLoS One. 2013 Dec 31;8(12):e83992 [PMID: 24391863]
  45. J Vasc Interv Radiol. 2016 Nov;27(11):1676-1685.e2 [PMID: 27641674]
  46. Tech Vasc Interv Radiol. 2022 Sep;25(3):100844 [PMID: 35842261]
  47. JAMA. 2009 May 20;301(19):2024-35 [PMID: 19454641]
  48. Adv Drug Deliv Rev. 2017 Mar;112:78-87 [PMID: 28559093]
  49. Egypt Heart J. 2019 Nov 27;71(1):28 [PMID: 31773342]

Grants

  1. 956470/European Commission

Word Cloud

Created with Highcharts 10.0.0concentrationspaclitaxel:trackingPCBupstream0druglosstreatmentporcineplasmasamplespost-inflationtissuesdeliveryng/gballoonsPCBstreatedarterialhighlossesna��veISRSFAcollecteddownstreamfrictionaltissuesitesvs>99arteryefficienttransfer��gatmDrugPaclitaxel-coatedcandeliverefficacioussegmentsknownexhibitaimeddefinegoverningfactorsimpactingcontrastdistributionconsequencesinflationsiteFourfourin-stentrestenosissuperficialfemoralarteriespost-trackingAnimalssacrificed<1hpost-interventionlocalquantificationComputationallydrivenquantitativebenchtop-trackingPCB-slidingexperimentsmodeledPaclitaxelpeakedpre-inflationdeclined30-foldimmediatelyCorrespondingly30%1%nominalloadmeasuredvitrorespectivelysinglebenddeviceinsertionMeanequally5698479837ranged989Samplingnon-targetiliacrevealedconcentration4351��4084Benchtopslidingontoexvivoexhibitedpressureindependent124051261interactionsvesselbendsledprematureresultingpeakexceedingplausiblyexplainedarisingfriction-mediatedcoatingLossArterialBendsCanDominateOff-TargetDeliveryPaclitaxel-CoatedBalloonscomputationalsimulationdrug-coatedendovascularperipheraldiseasepreclinicalmodels

Similar Articles

Cited By

No available data.