Development, Current Status, and Remaining Challenges for Respiratory Syncytial Virus Vaccines.

Cleo Anastassopoulou, Snežana Medić, Stefanos Ferous, Fotini Boufidou, Athanasios Tsakris
Author Information
  1. Cleo Anastassopoulou: Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece. ORCID
  2. Snežana Medić: Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia. ORCID
  3. Stefanos Ferous: Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece. ORCID
  4. Fotini Boufidou: Neurochemistry and Biological Markers Unit, 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece. ORCID
  5. Athanasios Tsakris: Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece. ORCID

Abstract

Respiratory syncytial virus (RSV) causes significant morbidity and mortality, especially in young children and the elderly. RSV vaccine development puzzled vaccinologists for years. Safety concerns of initial formulations, the lack of an absolute correlate of protection, and the need for selecting appropriate virus attenuation and antigen-adjuvant combinations contributed to delayed vaccine production. The recent stabilization of the RSV-F glycoprotein in the prefusion (preF) conformation that constitutes the primary target of RSV-neutralizing antibodies was key for efficient vaccine design. Two protein subunit vaccines (GSK's Arexvy and Pfizer's Abrysvo) and one mRNA RSV vaccine (Moderna's mRESVIA) are now available. This article aims to provide a comparative overview of the safety and efficacy of novel RSV vaccines that are approved for the prevention of RSV-lower respiratory tract disease (LRTD) in adults 60 years of age and older, with updated recommendations calling for the expansion of vaccination to all adults at increased risk for severe RSV disease. Abrysvo is the only vaccine indicated for use in pregnancy to prevent RSV-LRTD in infants from birth to 6 months of age. We provide a comparative assessment of the efficacy of approved RSV vaccines over a maximum of three seasons, summarizing currently available data. We conclude that despite the decreasing vaccine efficacy over time, which should be anticipated for a virus that is characterized by short-term immunity, efficacy was clinically meaningful over placebo. The increased risk of Guillain-Barré syndrome post vaccination with Abrysvo or Arexvy, which prompted the FDA to require the inclusion of such warnings in the prescribing information of these two RSV vaccines, should be prioritized and investigated thoroughly. Furthermore, ongoing vaccine surveillance and further evaluation, particularly among immunocompromised patients, frail elderly subjects, and young infants that were under- or not represented in pivotal clinical trials, are necessary. As in the success story of combined pediatric vaccines, combination vaccines, conferring protection against several respiratory illnesses in one dose, could help improve vaccine acceptance and coverage rates in older adults.

Keywords

References

  1. Clin Infect Dis. 2021 Dec 6;73(11):e4223-e4228 [PMID: 33338197]
  2. J Infect Dis. 2024 Sep 23;230(3):e647-e656 [PMID: 38385566]
  3. Clin Microbiol Rev. 1999 Apr;12(2):298-309 [PMID: 10194461]
  4. N Engl J Med. 2023 Apr 20;388(16):1465-1477 [PMID: 37018468]
  5. Euro Surveill. 2022 Apr;27(16): [PMID: 35451364]
  6. J Pediatric Infect Dis Soc. 2024 Jul 12;13(Supplement_2):S103-S109 [PMID: 38577737]
  7. Influenza Other Respir Viruses. 2024 Feb 03;18(2):e13236 [PMID: 38314063]
  8. Int J Cardiol. 2022 Jul 1;358:136-139 [PMID: 35436559]
  9. Nat Biotechnol. 2010 Jun;28(6):573-9 [PMID: 20531338]
  10. MMWR Morb Mortal Wkly Rep. 2023 Sep 29;72(39):1065-1071 [PMID: 37768879]
  11. Cureus. 2023 Mar 18;15(3):e36342 [PMID: 37082497]
  12. J Infect Dis. 2023 Mar 28;227(6):761-772 [PMID: 35904987]
  13. N Engl J Med. 2023 Dec 14;389(24):2233-2244 [PMID: 38091530]
  14. Lancet. 2022 May 28;399(10340):2047-2064 [PMID: 35598608]
  15. MMWR Morb Mortal Wkly Rep. 2024 Aug 15;73(32):696-702 [PMID: 39146277]
  16. Infect Dis Now. 2021 Aug;51(5):418-423 [PMID: 33991720]
  17. Lancet. 2022 Nov 12;400(10364):1663-1665 [PMID: 35843260]
  18. N Engl J Med. 2024 Oct 17;391(15):1459-1460 [PMID: 39413383]
  19. J Infect Dis. 2024 Nov 15;230(5):e996-e1006 [PMID: 38889247]
  20. Immunity. 2021 Apr 13;54(4):769-780.e6 [PMID: 33823129]
  21. Expert Rev Vaccines. 2011 Oct;10(10):1415-33 [PMID: 21988307]
  22. Nat Med. 2009 Jan;15(1):34-41 [PMID: 19079256]
  23. Drugs Aging. 2024 Jun;41(6):487-505 [PMID: 38713299]
  24. J Infect Dis. 2022 Dec 13;226(12):2054-2063 [PMID: 35543281]
  25. Curr Opin Infect Dis. 2023 Oct 1;36(5):379-384 [PMID: 37610444]
  26. JAMA. 2024 Oct 1;332(13):1105-1107 [PMID: 39230920]
  27. J Gen Virol. 2017 Dec;98(12):2912-2913 [PMID: 29087278]
  28. J Infect Dis. 2023 Nov 28;228(11):1539-1548 [PMID: 37246742]
  29. PLoS One. 2023 Feb 16;18(2):e0281555 [PMID: 36795639]
  30. Influenza Other Respir Viruses. 2023 Jan;17(1):e13031 [PMID: 36369772]
  31. Infect Drug Resist. 2023 Jan 30;16:661-675 [PMID: 36743336]
  32. PLoS One. 2017 Apr 17;12(4):e0175792 [PMID: 28414749]
  33. J Infect Dis. 2014 Jun 1;209(11):1679-81 [PMID: 24523511]
  34. N Engl J Med. 2023 Apr 20;388(16):1451-1464 [PMID: 37018474]
  35. Clin Infect Dis. 2024 Jun 14;78(6):1732-1744 [PMID: 38253338]
  36. Immunity. 2018 Feb 20;48(2):339-349.e5 [PMID: 29396163]
  37. Clin Infect Dis. 2021 Sep 2;73(Suppl_3):S229-S237 [PMID: 34472576]
  38. N Engl J Med. 2022 Apr 28;386(17):1615-1626 [PMID: 35476650]
  39. J Virol. 2017 Jul 12;91(15): [PMID: 28539438]
  40. Lancet Reg Health Eur. 2024 Jan 08;38:100829 [PMID: 38476752]
  41. Science. 2013 May 31;340(6136):1113-7 [PMID: 23618766]
  42. Fam Med Community Health. 2023 Oct;11(4): [PMID: 37832975]
  43. Vaccines (Basel). 2023 Oct 18;11(10): [PMID: 37897010]
  44. JAMA Netw Open. 2023 Feb 1;6(2):e2255779 [PMID: 36780157]
  45. N Engl J Med. 2024 Mar 14;390(11):1009-1021 [PMID: 38477988]
  46. J Infect Dis. 2022 Apr 19;225(8):1357-1366 [PMID: 34932102]
  47. Ther Adv Infect Dis. 2022 Oct 8;9:20499361221128091 [PMID: 36225856]
  48. Nat Med. 2009 Jan;15(1):21-2 [PMID: 19129777]
  49. Lancet Infect Dis. 2018 Oct;18(10):e295-e311 [PMID: 29914800]
  50. Sci Immunol. 2016 Dec 16;1(6): [PMID: 28111638]
  51. MMWR Morb Mortal Wkly Rep. 2024 May 30;73(21):489-494 [PMID: 38814851]
  52. Lancet Reg Health Eur. 2022 Sep;20:100453 [PMID: 35791336]
  53. JAMA. 2024 Jun 11;331(22):1880-1882 [PMID: 38758548]
  54. Nat Rev Microbiol. 2021 Aug;19(8):528-545 [PMID: 33753932]
  55. Am J Epidemiol. 1969 Apr;89(4):422-34 [PMID: 4305198]
  56. N Engl J Med. 2022 Jun 23;386(25):2377-2386 [PMID: 35731653]
  57. Vaccines (Basel). 2021 Jun 09;9(6): [PMID: 34207770]
  58. J Infect Dis. 2022 Dec 13;226(12):2095-2104 [PMID: 36031537]
  59. Pediatr Neonatol. 2024 Mar;65(2):152-158 [PMID: 37758594]
  60. Open Forum Infect Dis. 2022 Jun 17;9(7):ofac300 [PMID: 35873302]
  61. Immunity. 2019 Sep 17;51(3):429-442 [PMID: 31533056]
  62. BMC Infect Dis. 2023 Oct 27;23(1):734 [PMID: 37891488]
  63. Pediatr Res. 2008 Jun;63(6):599-601 [PMID: 18520329]
  64. Vaccines (Basel). 2024 May 22;12(6): [PMID: 38932295]
  65. J Infect Dis. 2020 Oct 7;222(Suppl 7):S688-S694 [PMID: 32821916]
  66. NPJ Vaccines. 2023 Sep 25;8(1):138 [PMID: 37749081]
  67. Vaccines (Basel). 2023 Sep 01;11(9): [PMID: 37766123]
  68. PLoS One. 2015 Mar 20;10(3):e0120098 [PMID: 25793751]
  69. Sci Rep. 2023 Aug 19;13(1):13531 [PMID: 37598270]
  70. Am J Epidemiol. 1969 Apr;89(4):405-21 [PMID: 4305197]
  71. N Engl J Med. 2023 Feb 16;388(7):595-608 [PMID: 36791160]
  72. Curr Top Microbiol Immunol. 2013;372:259-84 [PMID: 24362694]
  73. Science. 2013 Nov 1;342(6158):592-8 [PMID: 24179220]

Word Cloud

Created with Highcharts 10.0.0vaccineRSVvaccinesvirusefficacyrespiratoryadultsAbrysvodiseaseolderRespiratorysyncytialyoungelderlyyearsprotectionprefusionArexvyoneavailableprovidecomparativeapprovedtractLRTDagevaccinationincreasedriskinfantscausessignificantmorbiditymortalityespeciallychildrendevelopmentpuzzledvaccinologistsSafetyconcernsinitialformulationslackabsolutecorrelateneedselectingappropriateattenuationantigen-adjuvantcombinationscontributeddelayedproductionrecentstabilizationRSV-FglycoproteinpreFconformationconstitutesprimarytargetRSV-neutralizingantibodieskeyefficientdesignTwoproteinsubunitGSK'sPfizer'smRNAModerna'smRESVIAnowarticleaimsoverviewsafetynovelpreventionRSV-lower60updatedrecommendationscallingexpansionsevereindicatedusepregnancypreventRSV-LRTDbirth6monthsassessmentmaximumthreeseasonssummarizingcurrentlydataconcludedespitedecreasingtimeanticipatedcharacterizedshort-termimmunityclinicallymeaningfulplaceboGuillain-BarrésyndromepostpromptedFDArequireinclusionwarningsprescribinginformationtwoprioritizedinvestigatedthoroughlyFurthermoreongoingsurveillanceevaluationparticularlyamongimmunocompromisedpatientsfrailsubjectsunder-representedpivotalclinicaltrialsnecessarysuccessstorycombinedpediatriccombinationconferringseveralillnessesdosehelpimproveacceptancecoverageratesDevelopmentCurrentStatusRemainingChallengesSyncytialVirusVaccineslowermaternalimmunizationF

Similar Articles

Cited By