Brassinosteroids in Micronutrient Homeostasis: Mechanisms and Implications for Plant Nutrition and Stress Resilience.

Laiba Usmani, Adiba Shakil, Iram Khan, Tanzila Alvi, Surjit Singh, Debatosh Das
Author Information
  1. Laiba Usmani: School of Health Sciences and Translational Research, Department of Biotechnology, Sister Nivedita University, Kolkata 700156, West Bengal, India.
  2. Adiba Shakil: School of Health Sciences and Translational Research, Department of Biotechnology, Sister Nivedita University, Kolkata 700156, West Bengal, India. ORCID
  3. Iram Khan: School of Health Sciences and Translational Research, Department of Biotechnology, Sister Nivedita University, Kolkata 700156, West Bengal, India.
  4. Tanzila Alvi: School of Health Sciences and Translational Research, Department of Biotechnology, Sister Nivedita University, Kolkata 700156, West Bengal, India.
  5. Surjit Singh: School of Health Sciences and Translational Research, Department of Biotechnology, Sister Nivedita University, Kolkata 700156, West Bengal, India. ORCID
  6. Debatosh Das: Natural Products Utilization Research, U.S. Department of Agriculture, Agricultural Research Service, Oxford, MS 38677, USA. ORCID

Abstract

Brassinosteroids (BRs) are crucial plant hormones that play a significant role in regulating various physiological processes, including micronutrient homeostasis. This review delves into the complex roles of BRs in the uptake, distribution, and utilization of essential micronutrients such as iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and boron (B). BRs influence the expression of key transporter genes responsible for the absorption and internal distribution of these micronutrients. For iron, BRs enhance the expression of genes related to iron reduction and transport, improve root architecture, and strengthen stress tolerance mechanisms. Regarding zinc, BRs regulate the expression of zinc transporters and support root development, thereby optimizing zinc uptake. Manganese homeostasis is managed through the BR-mediated regulation of manganese transporter genes and chlorophyll production, essential for photosynthesis. For copper, BRs influence the expression of copper transporters and maintain copper-dependent enzyme activities crucial for metabolic functions. Finally, BRs contribute to boron homeostasis by regulating its metabolism, which is vital for cell wall integrity and overall plant development. This review synthesizes recent findings on the mechanistic pathways through which BRs affect micronutrient homeostasis and discusses their implications for enhancing plant nutrition and stress resilience. Understanding these interactions offers valuable insights into strategies for improving micronutrient efficiency in crops, which is essential for sustainable agriculture. This comprehensive analysis highlights the significance of BRs in micronutrient management and provides a framework for future research aimed at optimizing nutrient use and boosting plant productivity.

Keywords

References

  1. Int J Mol Sci. 2021 Aug 05;22(16): [PMID: 34445112]
  2. Ecotoxicol Environ Saf. 2021 Jan 1;207:111081 [PMID: 32927154]
  3. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5624-8 [PMID: 8643627]
  4. Physiol Plant. 2021 Mar;171(3):371-387 [PMID: 33090462]
  5. Sci Rep. 2022 Jul 4;12(1):11294 [PMID: 35788151]
  6. Front Plant Sci. 2023 Jul 21;14:1218229 [PMID: 37546254]
  7. New Phytol. 2015 Apr;206(2):522-40 [PMID: 25615890]
  8. Ann Bot. 2012 Aug;110(3):681-8 [PMID: 22684685]
  9. Int J Mol Sci. 2022 Jan 18;23(3): [PMID: 35162936]
  10. Front Plant Sci. 2020 Mar 26;11:300 [PMID: 32273877]
  11. Development. 2013 Apr;140(8):1615-20 [PMID: 23533170]
  12. Nat Commun. 2022 Nov 23;13(1):7180 [PMID: 36424382]
  13. Front Plant Sci. 2023 Feb 09;14:1104874 [PMID: 36844040]
  14. Plant Cell Environ. 2009 Apr;32(4):408-16 [PMID: 19183299]
  15. Antioxidants (Basel). 2020 Jul 29;9(8): [PMID: 32751256]
  16. Int J Mol Sci. 2021 Mar 08;22(5): [PMID: 33800127]
  17. Plant Cell Environ. 2020 Oct;43(10):2325-2335 [PMID: 32671865]
  18. Plants (Basel). 2019 Sep 27;8(10): [PMID: 31569811]
  19. Plants (Basel). 2022 Sep 16;11(18): [PMID: 36145825]
  20. J Exp Bot. 2015 May;66(9):2749-61 [PMID: 25770588]
  21. J Exp Bot. 2022 Mar 15;73(6):1789-1799 [PMID: 35134869]
  22. Proc Natl Acad Sci U S A. 2021 Mar 16;118(11): [PMID: 33836559]
  23. Int J Mol Sci. 2021 Sep 06;22(17): [PMID: 34502565]
  24. Curr Opin Plant Biol. 2009 Jun;12(3):320-7 [PMID: 19481496]
  25. Biomolecules. 2021 Jan 08;11(1): [PMID: 33435585]
  26. Front Plant Sci. 2022 Feb 11;13:840624 [PMID: 35222495]
  27. Plant Cell. 2020 Feb;32(2):295-318 [PMID: 31776234]
  28. Front Plant Sci. 2016 Aug 05;7:1192 [PMID: 27547212]
  29. Arabidopsis Book. 2002;1:e0009 [PMID: 22303191]
  30. Front Plant Sci. 2020 Jun 11;11:854 [PMID: 32595692]
  31. Curr Protein Pept Sci. 2015;16(5):462-73 [PMID: 25824388]
  32. Plant Biol (Stuttg). 2005 Mar;7(2):110-7 [PMID: 15822006]
  33. New Phytol. 2017 Nov;216(3):868-881 [PMID: 28833172]
  34. Plant Cell. 2002 Jun;14(6):1223-33 [PMID: 12084823]
  35. J Exp Bot. 2020 Mar 12;71(5):1681-1693 [PMID: 31985801]
  36. J Genet Genomics. 2023 Aug;50(8):541-553 [PMID: 36914050]
  37. Biol Res. 2018 Nov 12;51(1):46 [PMID: 30419959]
  38. Front Plant Sci. 2021 Mar 24;12:608061 [PMID: 33841453]
  39. Plant Sci. 2020 Jul;296:110474 [PMID: 32540004]
  40. Front Plant Sci. 2022 Oct 07;13:1033092 [PMID: 36275511]
  41. Int J Mol Sci. 2024 Jun 26;25(13): [PMID: 39000099]
  42. Development. 2019 Mar 14;146(5): [PMID: 30872266]
  43. Plant Signal Behav. 2023 Dec 31;18(1):2186640 [PMID: 37083111]
  44. Int J Mol Sci. 2019 Dec 19;21(1): [PMID: 31861687]
  45. Environ Sci Pollut Res Int. 2017 Jul;24(19):15959-15975 [PMID: 28540554]
  46. Ann Bot. 2010 Jun;105(7):1103-8 [PMID: 20228086]
  47. Biochim Biophys Acta Mol Cell Res. 2019 Dec;1866(12):118535 [PMID: 31446062]
  48. Int J Mol Sci. 2020 Feb 20;21(4): [PMID: 32093172]
  49. Front Plant Sci. 2023 Jan 12;13:1079660 [PMID: 36714713]
  50. Trends Plant Sci. 2024 Jan;29(1):86-98 [PMID: 37805340]
  51. Chemosphere. 2020 Nov;259:127436 [PMID: 32599387]
  52. J Exp Bot. 2016 Dec;67(22):6431-6444 [PMID: 27811002]
  53. Curr Biol. 2020 Apr 6;30(7):R294-R298 [PMID: 32259497]
  54. J Biol Chem. 2015 Nov 13;290(46):27688-99 [PMID: 26432636]
  55. Int J Mol Sci. 2019 Jan 15;20(2): [PMID: 30650539]
  56. Front Plant Sci. 2024 Feb 12;15:1332459 [PMID: 38410729]

Word Cloud

Created with Highcharts 10.0.0BRsplantmicronutrienthomeostasiszincexpressionessentialmicronutrientsironcoppergenesstressBrassinosteroidscrucialregulatingreviewuptakedistributionmanganeseboroninfluencetransporterroottransportersdevelopmentoptimizingnutritionhormonesplaysignificantrolevariousphysiologicalprocessesincludingdelvescomplexrolesutilizationFeZnMnCuBkeyresponsibleabsorptioninternalenhancerelatedreductiontransportimprovearchitecturestrengthentolerancemechanismsRegardingregulatesupporttherebyManganesemanagedBR-mediatedregulationchlorophyllproductionphotosynthesismaintaincopper-dependentenzymeactivitiesmetabolicfunctionsFinallycontributemetabolismvitalcellwallintegrityoverallsynthesizesrecentfindingsmechanisticpathwaysaffectdiscussesimplicationsenhancingresilienceUnderstandinginteractionsoffersvaluableinsightsstrategiesimprovingefficiencycropssustainableagriculturecomprehensiveanalysishighlightssignificancemanagementprovidesframeworkfutureresearchaimednutrientuseboostingproductivityMicronutrientHomeostasis:MechanismsImplicationsPlantNutritionStressResiliencebrassinosteroidssignaling

Similar Articles

Cited By