Baculovirus Genetic Diversity and Population Structure.

Miguel López-Ferber, Primitivo Caballero, Trevor Williams
Author Information
  1. Miguel López-Ferber: HSM, University Montpellier, IMT Mines Ales, CNRS, IRD, 30319 Alès, France. ORCID
  2. Primitivo Caballero: Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Spain.
  3. Trevor Williams: Instituto de Ecología AC (INECOL), Xalapa, Veracruz 91073, Mexico. ORCID

Abstract

Baculoviruses can naturally regulate lepidopteran populations and are used as biological insecticides. The genetic diversity of these viruses affects their survival and efficacy in pest control. For nucleopolyhedroviruses, occlusion-derived virions and the occlusion body facilitate the transmission of groups of genomes, whereas this is not the case for granuloviruses. We review the evidence for baculovirus genetic diversity in the environment, in the host insect, and in occlusion bodies and virions. Coinfection allows defective genotypes to persist through complementation and results in the pseudotyping of virus progeny that can influence their transmissibility and insecticidal properties. Genetic diversity has marked implications for the development of pest resistance to virus insecticides. We conclude that future research is warranted on the physical segregation of genomes during virus replication and on the independent action of virions during infection. We also identify opportunities for studies on the transmission of genetic diversity and host resistance to viruses.

Keywords

References

  1. Ecol Evol. 2021 Jul 15;11(15):10090-10097 [PMID: 34367561]
  2. Appl Environ Microbiol. 2013 Feb;79(4):1118-25 [PMID: 23204420]
  3. Virus Genes. 2014 Dec;49(3):351-7 [PMID: 25224849]
  4. Mol Biol Evol. 2021 Aug 23;38(9):3512-3530 [PMID: 34191026]
  5. Oecologia. 2002 May;131(4):533-541 [PMID: 28547548]
  6. Mol Ecol. 2020 Nov;29(21):4128-4142 [PMID: 32860314]
  7. J Invertebr Pathol. 2004 Sep;87(1):29-38 [PMID: 15491596]
  8. J Gen Virol. 2009 Mar;90(Pt 3):662-671 [PMID: 19218212]
  9. Annu Rev Virol. 2018 Sep 29;5(1):113-139 [PMID: 30004832]
  10. J Econ Entomol. 2004 Aug;97(4):1202-8 [PMID: 15384328]
  11. J Econ Entomol. 2021 Apr 13;114(2):1009-1014 [PMID: 33604661]
  12. Dokl Biochem Biophys. 2015;465:351-3 [PMID: 26728722]
  13. J Virol. 1999 Jan;73(1):411-6 [PMID: 9847346]
  14. J Virol. 2009 May;83(10):5127-36 [PMID: 19264787]
  15. PLoS One. 2013 Oct 08;8(10):e77271 [PMID: 24116220]
  16. J Invertebr Pathol. 2005 Jun;89(2):101-11 [PMID: 15876438]
  17. J Virol. 2012 Dec;86(24):13576-88 [PMID: 23035236]
  18. J Gen Virol. 2005 Apr;86(Pt 4):945-961 [PMID: 15784888]
  19. Viruses. 2016 May 21;8(5): [PMID: 27213431]
  20. J Invertebr Pathol. 2017 May;145:23-30 [PMID: 28300599]
  21. Appl Environ Microbiol. 2001 Nov;67(11):5204-9 [PMID: 11679346]
  22. J Virol. 2019 Apr 3;93(8): [PMID: 30760565]
  23. J Invertebr Pathol. 2012 Oct;111(2):136-42 [PMID: 22824003]
  24. J Evol Biol. 2004 Sep;17(5):1018-25 [PMID: 15312074]
  25. PLoS One. 2013 Nov 05;8(11):e78834 [PMID: 24223853]
  26. Annu Rev Virol. 2021 Sep 29;8(1):183-199 [PMID: 34242062]
  27. Virology. 2013 Jan 5;435(1):1-13 [PMID: 23217611]
  28. Am Nat. 2011 Aug;178(2):214-20 [PMID: 21750385]
  29. J Virol Methods. 2008 Mar;148(1-2):146-54 [PMID: 18082274]
  30. Virus Evol. 2020 Sep 29;7(1):veaa073 [PMID: 33505705]
  31. Appl Environ Microbiol. 2015 Jun 15;81(12):3984-93 [PMID: 25841011]
  32. PLoS One. 2017 Jun 22;12(6):e0179157 [PMID: 28640892]
  33. Front Microbiol. 2020 May 06;11:753 [PMID: 32435237]
  34. Methods Mol Biol. 2016;1350:383-92 [PMID: 26820869]
  35. Viruses. 2020 Jan 02;12(1): [PMID: 31906433]
  36. Arch Virol. 2006 Apr;151(4):635-49 [PMID: 16328143]
  37. Virus Genes. 2000 Oct;21(3):167-77 [PMID: 11129632]
  38. J Virol. 1999 Jun;73(6):4908-18 [PMID: 10233952]
  39. Appl Environ Microbiol. 2021 Jan 15;87(3): [PMID: 33187994]
  40. J Invertebr Pathol. 1996 Sep;68(2):131-40 [PMID: 8858909]
  41. J Virol. 2008 Jul;82(13):6409-18 [PMID: 18434402]
  42. Viruses. 2022 Jul 31;14(8): [PMID: 36016318]
  43. Genome Biol Evol. 2015 Nov 27;8(1):94-108 [PMID: 26615220]
  44. J Evol Biol. 2016 Dec;29(12):2480-2490 [PMID: 27622965]
  45. J Virol. 2012 Sep;86(18):10245 [PMID: 22923803]
  46. Viruses. 2020 Jan 25;12(2): [PMID: 31991772]
  47. PLoS Biol. 2018 Mar 28;16(3):e2004444 [PMID: 29590105]
  48. Nat Commun. 2014;5:3348 [PMID: 24556639]
  49. J Anim Ecol. 2009 May;78(3):646-55 [PMID: 19220564]
  50. J Invertebr Pathol. 2007 Mar;94(3):153-62 [PMID: 17125790]
  51. J Invertebr Pathol. 2013 Feb;112(2):159-61 [PMID: 23220242]
  52. Virus Genes. 2001 Jun;22(3):247-54 [PMID: 11450942]
  53. J Chem Ecol. 2017 Jun;43(6):586-598 [PMID: 28526946]
  54. J Virol. 1978 Sep;27(3):754-67 [PMID: 359831]
  55. PLoS Genet. 2022 Jun 6;18(6):e1009806 [PMID: 35666722]
  56. Front Microbiol. 2022 Jan 25;12:810026 [PMID: 35145496]
  57. J Invertebr Pathol. 2005 Feb;88(2):126-35 [PMID: 15766929]
  58. J Invertebr Pathol. 2019 Sep;166:107211 [PMID: 31220457]
  59. Viruses. 2017 Aug 18;9(8): [PMID: 28820456]
  60. Appl Environ Microbiol. 2010 Feb;76(3):803-9 [PMID: 20008167]
  61. Evolution. 2018 Dec;72(12):2749-2757 [PMID: 30298913]
  62. Viruses. 2021 Aug 26;13(9): [PMID: 34578277]
  63. Trends Microbiol. 2017 May;25(5):402-412 [PMID: 28262512]
  64. Viruses. 2023 Aug 30;15(9): [PMID: 37766245]
  65. PLoS One. 2013 Oct 30;8(10):e77683 [PMID: 24204916]
  66. Appl Environ Microbiol. 1998 Nov;64(11):4372-7 [PMID: 9797293]
  67. Infect Genet Evol. 2021 Jun;90:104749 [PMID: 33540087]
  68. J Invertebr Pathol. 2019 Jun;164:23-31 [PMID: 30930188]
  69. Viruses. 2017 Sep 04;9(9): [PMID: 28869567]
  70. Appl Environ Microbiol. 1990 Oct;56(10):3057-62 [PMID: 16348313]
  71. Viruses. 2021 Sep 22;13(10): [PMID: 34696324]
  72. BMC Genomics. 2015 Nov 25;16:1008 [PMID: 26607569]
  73. Appl Environ Microbiol. 2009 Feb;75(4):925-30 [PMID: 19114533]
  74. Cell Host Microbe. 2017 Oct 11;22(4):437-441 [PMID: 29024640]
  75. Viruses. 2024 May 06;16(5): [PMID: 38793618]
  76. J Invertebr Pathol. 2010 Oct;105(2):190-3 [PMID: 20600096]
  77. Insects. 2018 Jul 17;9(3): [PMID: 30018247]
  78. J Gen Virol. 2013 Nov;94(Pt 11):2524-2529 [PMID: 23929831]
  79. Annu Rev Virol. 2015 Nov;2(1):161-79 [PMID: 26958911]
  80. J Gen Virol. 2009 Jun;90(Pt 6):1499-1504 [PMID: 19264654]
  81. J Invertebr Pathol. 2017 Jul;147:4-22 [PMID: 27592378]
  82. Am Nat. 2015 Dec;186(6):797-806 [PMID: 26655986]
  83. Viruses. 2015 Jan 21;7(1):422-55 [PMID: 25609310]
  84. J Gen Virol. 2015 Jan;96(Pt 1):6-23 [PMID: 25246703]
  85. Arch Virol. 2018 Mar;163(3):713-718 [PMID: 29181624]
  86. Evolution. 2022 Oct;76(10):2375-2388 [PMID: 35946063]
  87. J Gen Virol. 2014 Oct;95(Pt 10):2297-2309 [PMID: 24854001]
  88. Insects. 2023 Jan 13;14(1): [PMID: 36662012]
  89. J Invertebr Pathol. 2012 Jul;110(3):375-81 [PMID: 22575733]
  90. Appl Environ Microbiol. 2004 Sep;70(9):5579-88 [PMID: 15345446]
  91. Viruses. 2024 May 30;16(6): [PMID: 38932173]
  92. Appl Environ Microbiol. 2001 Aug;67(8):3702-6 [PMID: 11472950]
  93. Viruses. 2015 Jul 07;7(7):3625-46 [PMID: 26198241]
  94. J Virol. 2014 Mar;88(6):3548-56 [PMID: 24403587]
  95. Virus Genes. 2020 Jun;56(3):401-405 [PMID: 32030574]
  96. J Invertebr Pathol. 2013 Nov;114(3):258-67 [PMID: 24012501]
  97. J Anim Ecol. 2021 Jun;90(6):1560-1569 [PMID: 33724454]
  98. Viruses. 2019 Jun 26;11(7): [PMID: 31247955]
  99. Ecol Lett. 2015 Nov;18(11):1252-1261 [PMID: 26365355]
  100. Proc Biol Sci. 2003 Nov 7;270(1530):2249-55 [PMID: 14613611]
  101. Nature. 2017 Jan 26;541(7638):488-493 [PMID: 28099413]
  102. Insect Biochem Mol Biol. 2024 Jan;164:104043 [PMID: 38013005]
  103. PLoS Comput Biol. 2011 Jun;7(6):e1002097 [PMID: 21738463]
  104. J Gen Virol. 2020 Dec;101(12):1300-1304 [PMID: 32894214]
  105. Virology. 1981 Jan 30;108(2):297-308 [PMID: 18635031]
  106. Arch Virol. 2012 Dec;157(12):2281-9 [PMID: 22878553]
  107. PLoS One. 2017 May 5;12(5):e0177301 [PMID: 28475633]
  108. Appl Environ Microbiol. 2020 Jan 7;86(2): [PMID: 31676472]
  109. J Invertebr Pathol. 2008 Jul;98(3):293-8 [PMID: 18479703]
  110. Curr Opin Insect Sci. 2017 Jun;21:54-59 [PMID: 28822489]
  111. Genomics. 2013 Jul;102(1):63-71 [PMID: 23639478]
  112. Virus Res. 2014 Oct 13;191:70-82 [PMID: 25087880]
  113. Appl Environ Microbiol. 2013 Jul;79(13):4056-64 [PMID: 23624474]
  114. Viruses. 2019 Jul 18;11(7): [PMID: 31323893]
  115. Viruses. 2022 Mar 26;14(4): [PMID: 35458418]
  116. J Gen Virol. 2018 Sep;99(9):1185-1186 [PMID: 29947603]
  117. Virology. 2001 Apr 25;283(1):132-8 [PMID: 11312669]
  118. Proc Biol Sci. 2010 Mar 22;277(1683):943-51 [PMID: 19939845]
  119. J Insect Physiol. 2019 Aug - Sep;117:103894 [PMID: 31175854]
  120. J Evol Biol. 2023 Nov;36(11):1551-1567 [PMID: 37975507]
  121. Annu Rev Entomol. 1999;44:257-89 [PMID: 15012374]

MeSH Term

Genetic Variation
Animals
Baculoviridae
Genome, Viral
Lepidoptera
Virus Replication
Pest Control, Biological
Virion
Nucleopolyhedroviruses

Word Cloud

Created with Highcharts 10.0.0diversitygeneticpestvirionsvirusresistancecaninsecticidesvirusesocclusiontransmissiongenomeshostGeneticBaculovirusesnaturallyregulatelepidopteranpopulationsusedbiologicalaffectssurvivalefficacycontrolnucleopolyhedrovirusesocclusion-derivedbodyfacilitategroupswhereascasegranulovirusesreviewevidencebaculovirusenvironmentinsectbodiesCoinfectionallowsdefectivegenotypespersistcomplementationresultspseudotypingprogenyinfluencetransmissibilityinsecticidalpropertiesmarkedimplicationsdevelopmentconcludefutureresearchwarrantedphysicalsegregationreplicationindependentactioninfectionalsoidentifyopportunitiesstudiesBaculovirusDiversityPopulationStructureLepidopterabioinsecticidegenotypeinteractionsgranulovirusnucleopolyhedrovirus

Similar Articles

Cited By