Insights into diversity, host-range, and temporal stability of Bacteroides and Phocaeicola prophages.

Nejc Stopnisek, Stina Hed��et, Toma�� Accetto, Maja Rupnik
Author Information
  1. Nejc Stopnisek: Department for Microbiological Research, Centre for Medical Microbiology, National Laboratory of Health, Environment and Food, Prvomajska 1, Maribor, 2000, Slovenia. nejc.stopnisek@nlzoh.si.
  2. Stina Hed��et: Department for Microbiological Research, Centre for Medical Microbiology, National Laboratory of Health, Environment and Food, Prvomajska 1, Maribor, 2000, Slovenia.
  3. Toma�� Accetto: Biotechnical Faculty, University of Ljubljana, Groblje 3, Domzale, 1230, Slovenia.
  4. Maja Rupnik: Department for Microbiological Research, Centre for Medical Microbiology, National Laboratory of Health, Environment and Food, Prvomajska 1, Maribor, 2000, Slovenia.

Abstract

BACKGROUND: Phages are critical components of the gut microbiome, influencing bacterial composition and function as predators, parasites, and modulators of bacterial phenotypes. Prophages, integrated forms of these phages, are prevalent in many bacterial genomes and play a role in bacterial adaptation and evolution. However, the diversity and stability of prophages within gut commensals, particularly in the genera Bacteroides and Phocaeicola, remain underexplored. This study aims to screen and characterize prophages in these genera, providing insights into their diversity, host range, and temporal dynamics in the human gut.
RESULTS: Using a combination of three bioinformatic tools-Cenote-Taker 3, Vibrant, and PHASTER-we conducted a comprehensive analysis of prophages in Bacteroides and Phocaeicola. Cenote-Taker 3 identified the most diverse set of prophages, with significant overlaps observed between the tools. After clustering high-quality prophages, we identified 22 unique viral operational taxonomic units (vOTUs). Notably, comparisons between prophages identified in isolated bacterial genomes, metaviromes, and large public gut virome databases revealed a broader host range than initially observed in single isolates. Certain prophages were consistent across time points and individuals, suggesting temporal stability. All identified prophages belonged to the Caudoviricetes class and contained genes related to antibiotic resistance, toxin production, and metabolic processes.
CONCLUSIONS: The combined use of multiple prophage detection tools allowed for a more comprehensive assessment of prophage diversity in Bacteroides and Phocaeicola. The identified prophages were not only prevalent but also exhibited broad host ranges and temporal stability. The presence of antibiotic resistance and toxin genes suggests that these prophages may significantly influence bacterial community structure and function in the gut, with potential implications for human health. These findings highlight the importance of using diverse detection tools to accurately assess prophage diversity and dynamics.

Keywords

References

  1. Nat Biotechnol. 2017 Nov;35(11):1026-1028 [PMID: 29035372]
  2. Nat Biotechnol. 2021 May;39(5):578-585 [PMID: 33349699]
  3. Mucosal Immunol. 2020 Mar;13(2):205-215 [PMID: 31907364]
  4. Nucleic Acids Res. 2020 Sep 18;48(16):8883-8900 [PMID: 32766782]
  5. Evolution. 2021 Feb;75(2):515-528 [PMID: 33347602]
  6. Arch Virol. 2023 Jan 23;168(2):74 [PMID: 36683075]
  7. Nat Commun. 2020 Oct 6;11(1):5018 [PMID: 33024089]
  8. Front Microbiol. 2021 Dec 13;12:785634 [PMID: 34966370]
  9. Bioinformatics. 2013 Apr 15;29(8):1072-5 [PMID: 23422339]
  10. Cell. 2021 Feb 18;184(4):1098-1109.e9 [PMID: 33606979]
  11. Front Microbiol. 2023 Sep 05;14:1254535 [PMID: 37731926]
  12. Nat Commun. 2018 Jun 29;9(1):2542 [PMID: 29959318]
  13. J Mol Biol. 2018 Apr 13;430(8):1141-1156 [PMID: 29518409]
  14. Curr Opin Microbiol. 2017 Aug;38:81-87 [PMID: 28544996]
  15. Int J Syst Evol Microbiol. 2009 Sep;59(Pt 9):2232-7 [PMID: 19620382]
  16. Anaerobe. 2024 Feb;85:102819 [PMID: 38215933]
  17. Curr Opin Microbiol. 2016 Apr;30:114-121 [PMID: 26874964]
  18. Nat Microbiol. 2024 Feb;9(2):359-376 [PMID: 38316929]
  19. Science. 2009 Jan 2;323(5910):139-41 [PMID: 19119236]
  20. Genet Mol Biol. 2024 Jan 19;46(3 Suppl 1):e20230120 [PMID: 38252058]
  21. Nat Biotechnol. 2019 Jan;37(1):29-37 [PMID: 30556814]
  22. Microbiome. 2024 Jun 5;12(1):102 [PMID: 38840247]
  23. Microbiome. 2018 Apr 3;6(1):65 [PMID: 29615108]
  24. Microbiome. 2018 Oct 23;6(1):191 [PMID: 30352623]
  25. Microorganisms. 2021 Apr 21;9(5): [PMID: 33919474]
  26. Front Microbiol. 2022 Jan 06;12:773284 [PMID: 35069478]
  27. Microbiome. 2020 Jun 10;8(1):90 [PMID: 32522236]
  28. J Microbiol. 2014 Mar;52(3):235-42 [PMID: 24585054]
  29. Nat Commun. 2018 Nov 30;9(1):5114 [PMID: 30504855]
  30. Front Cell Infect Microbiol. 2023 Jul 27;13:1241058 [PMID: 37577374]
  31. Microbiome. 2023 Apr 21;11(1):84 [PMID: 37085924]
  32. mSphere. 2021 Aug 25;6(4):e0045221 [PMID: 34232073]
  33. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  34. Nat Rev Microbiol. 2022 Dec;20(12):737-749 [PMID: 35773472]
  35. ACS Infect Dis. 2021 Oct 8;7(10):2930-2940 [PMID: 34554722]
  36. Genome Biol. 2019 Sep 2;20(1):185 [PMID: 31477170]
  37. Front Microbiol. 2022 Dec 16;13:1032186 [PMID: 36590402]
  38. Front Microbiol. 2020 Dec 03;11:579802 [PMID: 33343523]
  39. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  40. Nat Microbiol. 2021 Jul;6(7):960-970 [PMID: 34168315]
  41. Microbiome. 2021 Mar 29;9(1):77 [PMID: 33781335]
  42. Virus Evol. 2020 Dec 30;7(1):veaa100 [PMID: 33505708]
  43. Sci Rep. 2022 Dec 6;12(1):21098 [PMID: 36473906]
  44. PLoS One. 2019 Oct 2;14(10):e0223364 [PMID: 31577829]
  45. Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21 [PMID: 27141966]
  46. Cell Host Microbe. 2020 Nov 11;28(5):724-740.e8 [PMID: 32841606]
  47. Environ Microbiol. 2020 Dec;22(12):4919-4933 [PMID: 32935433]
  48. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  49. Microbiome. 2021 Feb 1;9(1):37 [PMID: 33522966]
  50. F1000Res. 2018 Aug 24;7:1338 [PMID: 30254741]
  51. mSystems. 2022 Aug 30;7(4):e0032622 [PMID: 35880895]
  52. Imeta. 2023 Aug;2(3): [PMID: 38152703]
  53. Cell Host Microbe. 2019 Dec 11;26(6):764-778.e5 [PMID: 31757768]
  54. J Hazard Mater. 2024 May 5;469:133941 [PMID: 38447371]
  55. Front Microbiol. 2020 Jun 10;11:1287 [PMID: 32587586]
  56. PLoS Pathog. 2013 Mar;9(3):e1003236 [PMID: 23555250]
  57. Nat Commun. 2010;1:147 [PMID: 21266997]
  58. Nucleic Acids Res. 2024 Jan 5;52(D1):D756-D761 [PMID: 37904614]
  59. ISME J. 2020 Mar;14(3):771-787 [PMID: 31827247]
  60. Nat Microbiol. 2017 Apr 25;2:17026 [PMID: 28440278]
  61. Viruses. 2022 Oct 20;14(10): [PMID: 36298860]

Grants

  1. P3-0387/Javna Agencija za Raziskovalno Dejavnost RS
  2. P3-0387/Javna Agencija za Raziskovalno Dejavnost RS
  3. P4-0097/Javna Agencija za Raziskovalno Dejavnost RS
  4. P3-0387/Javna Agencija za Raziskovalno Dejavnost RS

MeSH Term

Prophages
Host Specificity
Humans
Genome, Bacterial
Bacteroides
Gastrointestinal Microbiome
Computational Biology
Phylogeny
Genetic Variation

Word Cloud

Created with Highcharts 10.0.0prophagesbacterialdiversitygutstabilityBacteroidesPhocaeicolaidentifiedtemporalhosttoolsresistanceprophagedetectionmicrobiomefunctionprevalentgenomesgenerarangedynamicshuman3comprehensivediverseobservedCaudoviricetesgenesantibiotictoxinProphageBACKGROUND:PhagescriticalcomponentsinfluencingcompositionpredatorsparasitesmodulatorsphenotypesProphagesintegratedformsphagesmanyplayroleadaptationevolutionHoweverwithincommensalsparticularlyremainunderexploredstudyaimsscreencharacterizeprovidinginsightsRESULTS:Usingcombinationthreebioinformatictools-Cenote-TakerVibrantPHASTER-weconductedanalysisCenote-Takersetsignificantoverlapsclusteringhigh-quality22uniqueviraloperationaltaxonomicunitsvOTUsNotablycomparisonsisolatedmetaviromeslargepublicviromedatabasesrevealedbroaderinitiallysingleisolatesCertainconsistentacrosstimepointsindividualssuggestingbelongedclasscontainedrelatedproductionmetabolicprocessesCONCLUSIONS:combinedusemultipleallowedassessmentalsoexhibitedbroadrangespresencesuggestsmaysignificantlyinfluencecommunitystructurepotentialimplicationshealthfindingshighlightimportanceusingaccuratelyassessInsightshost-rangeAntibioticGutPhage-bacteriainteractionsTemporal

Similar Articles

Cited By

No available data.