Two sexually compatible monokaryons from a heterokaryotic strain respond differently to heat stress.

Yuan Guo, Wenyu Jiao, Yajie Zhang, Meiting Tan, Qi Gao, Yu Liu, Shouxian Wang
Author Information
  1. Yuan Guo: Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
  2. Wenyu Jiao: College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China.
  3. Yajie Zhang: College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.
  4. Meiting Tan: College of Agriculture and Food Engineering, Baise University, Baise, China.
  5. Qi Gao: Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
  6. Yu Liu: Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
  7. Shouxian Wang: Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.

Abstract

Background: Despite the extensive research conducted on heat responses of heterokaryotic cells, the responses of the two sexually compatible monokaryons to heat stress (HS) remain largely unknown.
Methods: To bridge this gap, we examined the nucleus-specific (SP3 and SP30) heat resistant mechanisms using an integrated physiological, metabolomic and transcriptomic approach.
Results: The results showed that HS elicited the boost of ROS and hampered mycelium growth for both monokaryons. Metabolome and transcriptome analysis demonstrated that the two sexually compatible monokaryons responded differently to HS. For SP3, the differentially expressed genes (DEGs) were significantly enriched in Mitogen-Activated Protein Kinase (MAPK) signaling, cell cycle and sugar metabolism, whereas those DEGs for SP30 were enriched in glyoxylate and dicarboxylate metabolism, and protein processing. The differentially accumulated metabolites (DAMs) of both strains were enriched in the glycerophospholipid metabolism, alpha-linolenic acid metabolism, biosynthesis of cofactors, etc, but were regulated differently in each strain. The enriched KEGG pathways for SP3 tend to be downregulated, whereas those in SP30 exhibited a contrary trend. The genes in MAPK signaling pathway were associated with the glycerophospholipid metabolism in SP3, but not in SP30. Omics-integration analysis revealed distinguishing regulatory networks and identified completely different hub genes for the two strains.
Discussion: Our findings revealed, for the first time, the different heat-resistance mechanisms of the two compatible nuclei and provided candidate metabolites, responsive genes and regulatory pathways for further experimental validation.

Keywords

References

  1. Front Microbiol. 2022 Nov 17;13:1009885 [PMID: 36478857]
  2. J Lipid Res. 2014 May;55(5):799-807 [PMID: 24646950]
  3. BMC Plant Biol. 2024 Aug 15;24(1):776 [PMID: 39143536]
  4. Science. 2002 Dec 6;298(5600):1911-2 [PMID: 12471242]
  5. Genomics Proteomics Bioinformatics. 2021 Aug;19(4):584-589 [PMID: 34175476]
  6. Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2214076120 [PMID: 36848567]
  7. J Fungi (Basel). 2024 Aug 05;10(8): [PMID: 39194878]
  8. BMC Plant Biol. 2020 Jul 8;20(1):323 [PMID: 32640987]
  9. J Fungi (Basel). 2023 Jan 29;9(2): [PMID: 36836294]
  10. Int J Biol Macromol. 2024 Apr;263(Pt 2):130610 [PMID: 38447851]
  11. PLoS One. 2022 Sep 12;17(9):e0274394 [PMID: 36094945]
  12. Heliyon. 2023 Jul 17;9(7):e18360 [PMID: 37519752]
  13. Cell Physiol Biochem. 2018;50(5):1617-1637 [PMID: 30384356]
  14. J Fungi (Basel). 2024 Jul 18;10(7): [PMID: 39057381]
  15. Mol Phylogenet Evol. 2022 Aug;173:107494 [PMID: 35490968]
  16. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  17. Front Microbiol. 2022 Jun 20;13:910255 [PMID: 35801117]
  18. Nat Microbiol. 2023 Nov;8(11):2142-2153 [PMID: 37884816]
  19. Environ Microbiol. 2017 Feb;19(2):566-583 [PMID: 27554678]
  20. Cell Stress Chaperones. 2021 Jan;26(1):15-18 [PMID: 33083932]
  21. Front Microbiol. 2020 Apr 17;11:707 [PMID: 32362887]
  22. Front Microbiol. 2020 Jan 21;10:3148 [PMID: 32038581]
  23. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  24. Plant Commun. 2023 May 8;4(3):100514 [PMID: 36585788]
  25. Adv Exp Med Biol. 2020;1131:215-242 [PMID: 31646512]
  26. J Fungi (Basel). 2024 Sep 02;10(9): [PMID: 39330388]
  27. PLoS Comput Biol. 2017 Nov 3;13(11):e1005752 [PMID: 29099853]
  28. Biochim Biophys Acta. 2011 Sep;1813(9):1619-33 [PMID: 21167873]
  29. Appl Microbiol Biotechnol. 2021 Oct;105(20):7567-7576 [PMID: 34536103]
  30. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  31. Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4429-4434 [PMID: 29643074]
  32. Stat Appl Genet Mol Biol. 2008;7(1):Article 35 [PMID: 19049491]
  33. J Fungi (Basel). 2022 Feb 09;8(2): [PMID: 35205921]
  34. Philos Trans R Soc Lond B Biol Sci. 2016 Oct 19;371(1706): [PMID: 27619703]
  35. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  36. Front Plant Sci. 2024 May 07;15:1383018 [PMID: 38774221]
  37. Biotechnol Res Int. 2015;2015:132635 [PMID: 26881084]
  38. Int J Mol Sci. 2019 May 10;20(9): [PMID: 31083449]
  39. Int J Mol Sci. 2023 Aug 15;24(16): [PMID: 37628985]

Word Cloud

Created with Highcharts 10.0.0heatmetabolismtwocompatiblemonokaryonsSP3SP30genesenrichedsexuallystressHSdifferentlyresponsesheterokaryoticmechanismsanalysisdifferentiallyDEGsMAPKsignalingwhereasmetabolitesstrainsglycerophospholipidstrainpathwaysrevealedregulatorydifferentBackground:DespiteextensiveresearchconductedcellsremainlargelyunknownMethods:bridgegapexaminednucleus-specificresistantusingintegratedphysiologicalmetabolomictranscriptomicapproachResults:resultsshowedelicitedboostROShamperedmyceliumgrowthMetabolometranscriptomedemonstratedrespondedexpressedsignificantlyMitogen-ActivatedProteinKinasecellcyclesugarglyoxylatedicarboxylateproteinprocessingaccumulatedDAMsalpha-linolenicacidbiosynthesiscofactorsetcregulatedKEGGtenddownregulatedexhibitedcontrarytrendpathwayassociatedOmics-integrationdistinguishingnetworksidentifiedcompletelyhubDiscussion:findingsfirsttimeheat-resistancenucleiprovidedcandidateresponsiveexperimentalvalidationTworespondLentinulaedodesresponsemetabolomicsmulti-omicsintegrationtranscriptomics

Similar Articles

Cited By

No available data.