Regional variation in growth and survival responses to atmospheric nitrogen and sulfur deposition for 140 tree species across the United States.

Rebecca M Dalton, Jesse N Miller, Tara Greaver, Robert D Sabo, Kemen G Austin, Jennifer N Phelan, R Quinn Thomas, Christopher M Clark
Author Information
  1. Rebecca M Dalton: U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, Durham, NC, United States. ORCID
  2. Jesse N Miller: U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, DC, United States. ORCID
  3. Tara Greaver: U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, Durham, NC, United States. ORCID
  4. Robert D Sabo: U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, DC, United States. ORCID
  5. Kemen G Austin: Research Triangle Institute (RTI) International, Research Triangle Park, Durham, NC, United States. ORCID
  6. Jennifer N Phelan: Research Triangle Institute (RTI) International, Research Triangle Park, Durham, NC, United States. ORCID
  7. R Quinn Thomas: Department of Forest Resources and Environmental Conservation, Virginia Tech, Cheatham Hall, Blacksburg, VA, United States. ORCID
  8. Christopher M Clark: U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, DC, United States. ORCID

Abstract

Atmospheric deposition of nitrogen (N) and sulfur (S) alter tree demographic processes via changes in nutrient pools, soil acidification, and biotic interactions. Previous work established tree growth and survival response to atmospheric N and S deposition in the conterminous United States (CONUS) data by species; however, it was not possible to evaluate regional variation in response using that approach. In this study, we develop species- and region-specific relationships for growth and survival responses to N and S deposition for roughly 140 species within spatially demarcated regions of the U.S. We calculated responses to N and S deposition separately for 11 United States Forest Service (USFS) Divisions resulting in a total of 241 and 268 species × Division combinations for growth and survival, respectively. We then assigned these relationships into broad categories of vulnerability and used ordinal logistic regressions to explore the covariates associated with vulnerability in growth and survival to N and S deposition. As with earlier studies, we found growth and survival responses to air pollution differed by species; but new to this study, we found 45%-70% of species responses also varied spatially across regions. The regional variation in species responses was not simply related to atmospheric N and S deposition, but was also associated with regional effects from precipitation, soil pH, mycorrhizal association, and deciduousness. A large amount of the variance remained unexplained (total variation explained ranged from 6.8%-13.8%), suggesting that these or additional factors may operate at finer spatial scales. Taken together, our results demonstrate that regional variation in tree species' response has significant implications for setting critical load targets, as critical loads can now be tailored for specific species at management-relevant scales.

Keywords

References

  1. Environ Pollut. 2019 Jan;244:560-574 [PMID: 30384062]
  2. Sci Adv. 2019 Apr 10;5(4):eaav6358 [PMID: 30989116]
  3. Environ Pollut. 2018 Apr;235:293-301 [PMID: 29294455]
  4. Science. 2008 May 16;320(5878):889-92 [PMID: 18487183]
  5. Environ Pollut. 2007 Oct;149(3):281-92 [PMID: 17629382]
  6. Mycorrhiza. 2011 Feb;21(2):91-6 [PMID: 20422233]
  7. Environ Pollut. 2010 Jun;158(6):2053-8 [PMID: 20045233]
  8. Glob Chang Biol. 2024 Dec;30(12):e17597 [PMID: 39697146]
  9. Sci Total Environ. 2022 Nov 20;848:157840 [PMID: 35934026]
  10. Ecol Appl. 2012 Mar;22(2):517-31 [PMID: 22611851]
  11. Glob Chang Biol. 2022 Feb;28(3):899-917 [PMID: 34699094]
  12. Ecology. 2008 Feb;89(2):371-9 [PMID: 18409427]
  13. Ecol Lett. 2007 Dec;10(12):1135-42 [PMID: 17922835]
  14. Environ Res Commun. 2020 Feb 27;2(2):1-17 [PMID: 36313933]
  15. Environ Pollut. 2023 Feb 1;318:120887 [PMID: 36535424]
  16. New Phytol. 2002 Mar;153(3):441-447 [PMID: 33863221]
  17. Nat Sustain. 2023 Aug 21;6:1607-1619 [PMID: 39376716]
  18. Proc Natl Acad Sci U S A. 2024 Jan 2;121(1):e2304404120 [PMID: 38109562]
  19. Environ Sci Technol. 2020 Jun 2;54(11):6508-6517 [PMID: 32379431]
  20. Ecology. 2018 Feb;99(2):411-420 [PMID: 29341107]
  21. Sci Adv. 2021 Jan 13;7(3): [PMID: 33523891]
  22. Glob Chang Biol. 2020 Sep;26(9):5146-5163 [PMID: 32433807]
  23. New Phytol. 2013 Jul;199(1):41-51 [PMID: 23713553]
  24. Ecosphere. 2024 Jul 3;15(7):e4925 [PMID: 39758151]
  25. Evolution. 2003 Apr;57(4):717-45 [PMID: 12778543]
  26. Atmos Chem Phys. 2022 Sep 30;22(19):12749-12767 [PMID: 40012769]
  27. Sci Total Environ. 2009 Feb 15;407(5):1798-808 [PMID: 19185335]
  28. Environ Manage. 2014 Dec;54(6):1249-66 [PMID: 25223620]
  29. Glob Chang Biol. 2018 Oct;24(10):4544-4553 [PMID: 30051940]
  30. PLoS One. 2012;7(2):e30754 [PMID: 22347401]
  31. Environ Pollut. 1993;80(3):209-21 [PMID: 15091840]
  32. PLoS One. 2018 Oct 18;13(10):e0205296 [PMID: 30335770]
  33. J Geophys Res Biogeosci. 2019 Oct 24;125(1):e2019JG005036 [PMID: 39376207]
  34. Sci Total Environ. 2023 Jan 20;857(Pt 1):159252 [PMID: 36216054]
  35. New Phytol. 2017 Apr;214(2):513-520 [PMID: 27891619]
  36. Glob Chang Biol. 2020 Dec;26(12):7229-7241 [PMID: 32981218]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0depositionspeciesSgrowthsurvivalNtreeresponsesvariationregionalnitrogensulfurresponseatmosphericUnitedStatesvulnerabilitycriticalsoilstudyrelationships140spatiallyregionstotalassociatedfoundalsoacrossscalesloadAtmosphericalterdemographicprocessesviachangesnutrientpoolsacidificationbioticinteractionsPreviousworkestablishedconterminousCONUSdatahoweverpossibleevaluateusingapproachdevelopspecies-region-specificroughlywithindemarcatedUcalculatedseparately11ForestServiceUSFSDivisionsresulting241268×Divisioncombinationsrespectivelyassignedbroadcategoriesusedordinallogisticregressionsexplorecovariatesearlierstudiesairpollutiondifferednew45%-70%variedsimplyrelatedeffectsprecipitationpHmycorrhizalassociationdeciduousnesslargeamountvarianceremainedunexplainedexplainedranged68%-138%suggestingadditionalfactorsmayoperatefinerspatialTakentogetherresultsdemonstratespecies'significantimplicationssettingtargetsloadscannowtailoredspecificmanagement-relevantRegionalclimateforestinventoryanalysisFIA

Similar Articles

Cited By