Mohammad Ghaderzadeh, Ghodrat Rahimi-Mianji, Ardeshir Nejati-Javaremi, Nastaran Shahbazian
BACKGROUND: Viral hemorrhagic septicemia virus (VHSV) is a highly pathogenic virus that poses a significant threat to the health of diverse marine species. Among these, trout species, particularly rainbow trout (Oncorhynchus mykiss), are highly susceptible. This study evaluated the effects of VHSV infection on the biometric traits of rainbow trout and investigated the molecular mechanisms associated with the disease.
RESULTS: Biometric traits of fish were collected and documented weekly during the fourth and fifth weeks of the experiment. A statistically significant difference in body weight was observed in the fifth week, particularly between the control group and the groups injected with either physiological saline or the virus. Additionally, body length-related attributes showed significant variation across all treatment groups within the designated timeframe. RNA was extracted from spleen tissue of the group injected with high doses of physiological saline and the group injected with high doses of the virus using the TRIzol protocol. Differential gene expression analysis revealed 1,726 genes with significant differences between the two groups. Several key immune-related genes were identified, including TLR2, TLR7, TLR8, TLR22, IRF5, IRF6, IRF7, IRF8, IRF10, IL11a, IL12B, IL1b, IL7R, ILR1 II, HSP90B1, HSP47, TNF-��, TRF3, SPRY1, CASP3, FN1, GAPDH, and IgGFc-binding proteins. Network-based analysis of differentially expressed genes was conducted using the GeneMANIA module in Cytoscape, and metabolic pathways were identified through the DAVID database. The results highlighted the involvement of key pathways, including the Toll-like receptor pathway, p53 signaling pathway, PPAR signaling pathway, and the cell cycle, in the infected group. Validation tests for selected upregulated (EPCAM, APOC2 and XDD4) and downregulated (TLR7, XDH, and TSPAN36) candidate genes, were conducted using qRT-PCR. The qPCR results showed a strong and statistically significant correlation with the RNA-seq data, confirming the reliability of the findings.
CONCLUSIONS: VHSV significantly impacts the growth of rainbow trout, affecting both body length and gene expression. This study underscores the substantial economic risks posed by the virus and the absence of an effective cure, highlighting the importance of preventative measures. Additionally, potential resistance genes and pathways were identified through RNA sequencing, providing valuable insights for improving trout breeding programs.