Transcriptomic and biometric parameters analysis in rainbow trout (Oncorhynchus mykiss) challenged with viral hemorrhagic septicemia virus (VHSV).

Mohammad Ghaderzadeh, Ghodrat Rahimi-Mianji, Ardeshir Nejati-Javaremi, Nastaran Shahbazian
Author Information
  1. Mohammad Ghaderzadeh: Laboratory for Molecular Genetics and Animal Biotechnology, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran. mg.mahabad1365@gmail.com.
  2. Ghodrat Rahimi-Mianji: Laboratory for Molecular Genetics and Animal Biotechnology, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
  3. Ardeshir Nejati-Javaremi: Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
  4. Nastaran Shahbazian: Aquatic Animal Health and Diseases Management Department, Iranian Veterinary Organization, Tehran, Iran.

Abstract

BACKGROUND: Viral hemorrhagic septicemia virus (VHSV) is a highly pathogenic virus that poses a significant threat to the health of diverse marine species. Among these, trout species, particularly rainbow trout (Oncorhynchus mykiss), are highly susceptible. This study evaluated the effects of VHSV infection on the biometric traits of rainbow trout and investigated the molecular mechanisms associated with the disease.
RESULTS: Biometric traits of fish were collected and documented weekly during the fourth and fifth weeks of the experiment. A statistically significant difference in body weight was observed in the fifth week, particularly between the control group and the groups injected with either physiological saline or the virus. Additionally, body length-related attributes showed significant variation across all treatment groups within the designated timeframe. RNA was extracted from spleen tissue of the group injected with high doses of physiological saline and the group injected with high doses of the virus using the TRIzol protocol. Differential gene expression analysis revealed 1,726 genes with significant differences between the two groups. Several key immune-related genes were identified, including TLR2, TLR7, TLR8, TLR22, IRF5, IRF6, IRF7, IRF8, IRF10, IL11a, IL12B, IL1b, IL7R, ILR1 II, HSP90B1, HSP47, TNF-��, TRF3, SPRY1, CASP3, FN1, GAPDH, and IgGFc-binding proteins. Network-based analysis of differentially expressed genes was conducted using the GeneMANIA module in Cytoscape, and metabolic pathways were identified through the DAVID database. The results highlighted the involvement of key pathways, including the Toll-like receptor pathway, p53 signaling pathway, PPAR signaling pathway, and the cell cycle, in the infected group. Validation tests for selected upregulated (EPCAM, APOC2 and XDD4) and downregulated (TLR7, XDH, and TSPAN36) candidate genes, were conducted using qRT-PCR. The qPCR results showed a strong and statistically significant correlation with the RNA-seq data, confirming the reliability of the findings.
CONCLUSIONS: VHSV significantly impacts the growth of rainbow trout, affecting both body length and gene expression. This study underscores the substantial economic risks posed by the virus and the absence of an effective cure, highlighting the importance of preventative measures. Additionally, potential resistance genes and pathways were identified through RNA sequencing, providing valuable insights for improving trout breeding programs.

Keywords

References

  1. J Biol Chem. 2010 Jul 30;285(31):23537-47 [PMID: 20507977]
  2. Nat Rev Immunol. 2012 Feb 03;12(3):168-79 [PMID: 22301850]
  3. BMC Mol Biol. 2006 Jan 31;7:3 [PMID: 16448564]
  4. Nature. 2007 Jun 21;447(7147):972-8 [PMID: 17538624]
  5. Methods Mol Biol. 2007;402:35-60 [PMID: 17951789]
  6. Clin Chem. 2021 Jun 1;67(6):829-842 [PMID: 33890632]
  7. Vet Res. 2010 Nov-Dec;41(6):51 [PMID: 20409453]
  8. Blood. 2009 Feb 12;113(7):1399-407 [PMID: 18757776]
  9. Front Genet. 2014 Oct 14;5:348 [PMID: 25352861]
  10. Front Microbiol. 2020 Oct 20;11:574231 [PMID: 33193184]
  11. Fish Shellfish Immunol. 2013 Feb;34(2):632-40 [PMID: 23257204]
  12. Cell Death Differ. 2017 Aug;24(8):1411-1421 [PMID: 28644437]
  13. Rev Aquac. 2023 Mar;15(2):491-535 [PMID: 38504717]
  14. Viruses. 2022 Jul 15;14(7): [PMID: 35891526]
  15. J Immunol. 2005 Aug 15;175(4):2484-94 [PMID: 16081820]
  16. PLoS One. 2013;8(1):e53171 [PMID: 23308156]
  17. Neuron. 2003 Mar 27;37(6):939-52 [PMID: 12670423]
  18. OMICS. 2014 Feb;18(2):98-110 [PMID: 24380445]
  19. ILAR J. 2009;50(4):343-60 [PMID: 19949251]
  20. J Immunol. 2015 Jan 1;194(1):187-99 [PMID: 25416810]
  21. Front Microbiol. 2020 Aug 27;11:1984 [PMID: 32983011]
  22. Nat Commun. 2014 Apr 22;5:3657 [PMID: 24755649]
  23. Dev Comp Immunol. 2013 Jul-Aug;40(3-4):227-31 [PMID: 23500185]
  24. Annu Rev Immunol. 2003;21:335-76 [PMID: 12524386]
  25. Int J Parasitol. 2020 Sep;50(10-11):755-761 [PMID: 32592807]
  26. Comp Biochem Physiol B Biochem Mol Biol. 2002 Dec;133(4):609-46 [PMID: 12470823]
  27. Fish Shellfish Immunol. 2013 Sep;35(3):993-7 [PMID: 23742868]
  28. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  29. FASEB J. 2005 Oct;19(12):1671-3 [PMID: 16103108]
  30. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  31. Dev Comp Immunol. 2003 Sep;27(8):685-98 [PMID: 12798365]
  32. Virol J. 2010 Jan 26;7:19 [PMID: 20102597]
  33. J Gen Virol. 1996 Jun;77 ( Pt 6):1259-63 [PMID: 8683214]
  34. Vet Immunol Immunopathol. 2010 Apr 15;134(3-4):184-98 [PMID: 19800135]
  35. Mol Immunol. 2004 Jan;40(11):773-83 [PMID: 14687934]
  36. Virol J. 2009 Oct 25;6:171 [PMID: 19852863]
  37. Cold Spring Harb Perspect Biol. 2013 Apr 01;5(4):a008656 [PMID: 23545416]
  38. Fish Shellfish Immunol. 2013 Jul;35(1):9-17 [PMID: 23583726]
  39. Acta Trop. 2016 Apr;156:30-6 [PMID: 26777311]
  40. Fish Shellfish Immunol. 2015 Feb;42(2):473-82 [PMID: 25453727]
  41. Dev Comp Immunol. 2012 Oct;38(2):193-202 [PMID: 22721905]
  42. Fish Shellfish Immunol. 2002 May;12(5):389-97 [PMID: 12194451]
  43. PLoS One. 2013;8(2):e55302 [PMID: 23390526]
  44. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14887-91 [PMID: 14634207]
  45. Pharmacol Ther. 1998 Aug;79(2):129-68 [PMID: 9749880]
  46. Biology (Basel). 2016 May 24;5(2): [PMID: 27231948]
  47. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W214-20 [PMID: 20576703]
  48. Development. 2017 May 15;144(10):1764-1774 [PMID: 28360131]
  49. Mol Immunol. 2011 Jan;48(4):563-71 [PMID: 21111485]
  50. Fish Shellfish Immunol. 2008 Oct;25(4):351-7 [PMID: 18400516]
  51. Fish Shellfish Immunol. 2007 May;22(5):510-9 [PMID: 17085058]
  52. Neuron. 2015 Nov 4;88(3):461-74 [PMID: 26539888]
  53. Cell. 2006 Feb 24;124(4):783-801 [PMID: 16497588]
  54. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  55. Immunogenetics. 2003 Aug;55(5):325-35 [PMID: 12845498]
  56. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  57. Viruses. 2021 Mar 10;13(3): [PMID: 33802100]
  58. BMC Genomics. 2018 Jun 19;19(1):482 [PMID: 29921219]
  59. J Biol Chem. 2016 Dec 16;291(51):26262-26272 [PMID: 27803162]
  60. J Biol Chem. 2010 Dec 31;285(53):42046-57 [PMID: 20961848]
  61. PLoS One. 2014 Oct 22;9(10):e111084 [PMID: 25338079]
  62. J Comp Physiol B. 2011 Dec;181(8):1035-44 [PMID: 21594625]
  63. J Electron Microsc Tech. 1990 Jul;15(3):209-24 [PMID: 1973730]
  64. Viruses. 2011 Nov;3(11):2025-46 [PMID: 22163333]
  65. Nat Rev Neurosci. 2012 May 18;13(6):395-406 [PMID: 22595785]
  66. Dev Comp Immunol. 2014 Apr;43(2):184-96 [PMID: 23962742]
  67. Dev Growth Differ. 2011 Feb;53(2):137-48 [PMID: 21338340]
  68. PLoS One. 2016 Apr 07;11(4):e0153306 [PMID: 27054895]
  69. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2937-42 [PMID: 22315411]
  70. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  71. Mol Immunol. 2009 Sep;46(15):3163-70 [PMID: 19573927]
  72. Am J Transplant. 2014 Jul;14(7):1488-98 [PMID: 24903539]
  73. Cell Death Differ. 2013 Dec;20(12):1654-63 [PMID: 24096869]
  74. Front Immunol. 2017 Sep 04;8:1075 [PMID: 28928743]
  75. Genome Biol. 2007;8(9):R183 [PMID: 17784955]
  76. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  77. Immunogenetics. 2013 Jul;65(7):511-30 [PMID: 23558557]
  78. Mol Immunol. 2009 Sep;46(15):2918-30 [PMID: 19631987]
  79. BMC Genomics. 2003 Jul 17;4(1):29 [PMID: 12869211]
  80. Fish Shellfish Immunol. 2013 Nov;35(5):1635-41 [PMID: 24056277]
  81. Ann Rev Mar Sci. 2015;7:471-96 [PMID: 25251276]
  82. Fish Shellfish Immunol. 2003 Jul;15(1):39-50 [PMID: 12787686]
  83. J Immunol. 2019 Dec 15;203(12):3361-3373 [PMID: 31732531]
  84. Dev Comp Immunol. 2009;33(1):35-45 [PMID: 18760303]
  85. Dis Aquat Organ. 2004 Oct 21;61(1-2):11-21 [PMID: 15584406]

MeSH Term

Animals
Oncorhynchus mykiss
Novirhabdovirus
Transcriptome
Gene Expression Profiling
Hemorrhagic Septicemia, Viral
Fish Diseases
Biometry

Word Cloud

Created with Highcharts 10.0.0virustroutsignificantgenesVHSVrainbowgrouphemorrhagicsepticemiabodygroupsinjectedusinganalysisidentifiedpathwayspathwayViralhighlyspeciesparticularlyOncorhynchusmykissstudybiometrictraitsfifthstatisticallyphysiologicalsalineAdditionallyshowedRNAhighdosesgeneexpressionkeyincludingTLR7conductedresultssignalingRNA-seqBACKGROUND:pathogenicposesthreathealthdiversemarineAmongsusceptibleevaluatedeffectsinfectioninvestigatedmolecularmechanismsassociateddiseaseRESULTS:Biometricfishcollecteddocumentedweeklyfourthweeksexperimentdifferenceweightobservedweekcontroleitherlength-relatedattributesvariationacrosstreatmentwithindesignatedtimeframeextractedspleentissueTRIzolprotocolDifferentialrevealed1726differencestwoSeveralimmune-relatedTLR2TLR8TLR22IRF5IRF6IRF7IRF8IRF10IL11aIL12BIL1bIL7RILR1IIHSP90B1HSP47TNF-��TRF3SPRY1CASP3FN1GAPDHIgGFc-bindingproteinsNetwork-baseddifferentiallyexpressedGeneMANIAmoduleCytoscapemetabolicDAVIDdatabasehighlightedinvolvementToll-likereceptorp53PPARcellcycleinfectedValidationtestsselectedupregulatedEPCAMAPOC2XDD4downregulatedXDHTSPAN36candidateqRT-PCRqPCRstrongcorrelationdataconfirmingreliabilityfindingsCONCLUSIONS:significantlyimpactsgrowthaffectinglengthunderscoressubstantialeconomicrisksposedabsenceeffectivecurehighlightingimportancepreventativemeasurespotentialresistancesequencingprovidingvaluableinsightsimprovingbreedingprogramsTranscriptomicparameterschallengedviralGenenetworkRainbow

Similar Articles

Cited By