Genetic Monitoring of Brown Trout Released Into a Novel Environment: Establishment and Genetic Impact on Natural Populations.

Anastasia Andersson, Sara Kurland, Sten Karlsson, Nils Ryman, Linda Laikre
Author Information
  1. Anastasia Andersson: Department of Zoology Stockholm University Stockholm Sweden. ORCID
  2. Sara Kurland: Department of Zoology Stockholm University Stockholm Sweden. ORCID
  3. Sten Karlsson: Norwegian Institute for Nature Research (NINA) Trondheim Norway. ORCID
  4. Nils Ryman: Department of Zoology Stockholm University Stockholm Sweden. ORCID
  5. Linda Laikre: Department of Zoology Stockholm University Stockholm Sweden. ORCID

Abstract

Translocations are carried out either unintentionally or intentionally for conservation or management reasons. In both cases, translocated populations may genetically impact natural populations via introgression. Understanding how genetic background may affect an establishment in a novel environment and the potential risks for native populations is important for biodiversity conservation. Here, using a panel of 96 SNPs, we monitor the establishment of two genetically and ecologically distinct brown trout populations released into a mountain lake system in central Sweden where trout did not occur prior to the release. The release was carried out in 1979, and we monitor the establishment over the first three decades (5-6 generations) in seven lakes downstream of the release site. We find that extensive hybridization has occurred, and genes from both populations exist in all lakes examined. Genes from the population that was nonmigratory in its native environment have remained to a higher degree in the area close to the release site, while genes from the population that was more migratory in its native habitat have spread further downstream. All established populations exhibit higher levels of genetic diversity than the released populations. Natural, stream-resident brown trout populations occur ~15 km downstream of the release site and below a waterfall that acts as an upstream migration barrier. Released fish have spread genes to these populations but with low introgression rates of 3%-8%. Recently adopted indicators for monitoring genetic diversity were partly able to detect this introgression, emphasizing the usefulness of genetic indicators in management. The SNP panel used in this study provides a similar picture as previously used allozymes, showing that older marker systems with fewer loci may still be useful for describing the population structure.

Keywords

Associated Data

Dryad | 10.5061/dryad.37pvmcvvq

References

  1. Mol Biol Evol. 2010 Apr;27(4):747-52 [PMID: 20022889]
  2. Bioinformatics. 2012 Oct 1;28(19):2537-9 [PMID: 22820204]
  3. Mol Ecol. 2022 Dec;31(24):6422-6439 [PMID: 36170147]
  4. Glob Chang Biol. 2019 Dec;25(12):4034-4047 [PMID: 31230387]
  5. Mol Ecol Resour. 2023 Aug;23(6):1334-1347 [PMID: 37122118]
  6. Mol Ecol. 2019 Apr;28(8):1904-1918 [PMID: 30663828]
  7. Bioinformatics. 2011 Nov 1;27(21):3070-1 [PMID: 21926124]
  8. Mol Ecol Resour. 2014 Jan;14(1):209-14 [PMID: 23992227]
  9. Nat Commun. 2019 Dec 3;10(1):5391 [PMID: 31796733]
  10. Biol Lett. 2009 Jun 23;5(3):328-31 [PMID: 19324629]
  11. Mol Ecol. 2024 Jan;33(2):e17213 [PMID: 38014725]
  12. Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):E6089-E6096 [PMID: 28696295]
  13. Genetics. 2003 Aug;164(4):1567-87 [PMID: 12930761]
  14. Evol Appl. 2010 May;3(3):244-62 [PMID: 25567922]
  15. Genetics. 2007 Oct;177(2):927-35 [PMID: 17720927]
  16. Genetics. 1996 Jul;143(3):1369-81 [PMID: 8807308]
  17. Ecol Evol. 2022 Jul 03;12(7):e9050 [PMID: 35813906]
  18. Proc Biol Sci. 2013 Jun 19;280(1764):20131070 [PMID: 23782887]
  19. Mol Ecol Resour. 2008 Jan;8(1):103-6 [PMID: 21585727]
  20. Nat Ecol Evol. 2024 Feb;8(2):267-281 [PMID: 38225425]
  21. Genetics. 2014 Apr;196(4):1277-91 [PMID: 24473933]
  22. Mol Ecol. 2022 Jan;31(2):498-511 [PMID: 34699656]
  23. Evol Appl. 2011 May;4(3):444-58 [PMID: 25567994]
  24. Ambio. 2003 Mar;32(2):98-105 [PMID: 12733793]
  25. Mol Biol Evol. 2020 Jan 1;37(1):167-182 [PMID: 31518427]
  26. Sci Rep. 2019 May 1;9(1):6746 [PMID: 31043692]
  27. J Fish Biol. 2011 Dec;79(7):2074-82 [PMID: 22141907]
  28. Ambio. 2006 Aug;35(5):255-61 [PMID: 16989510]
  29. Mol Ecol. 2018 Oct;27(20):4041-4051 [PMID: 29802799]
  30. Animals (Basel). 2020 Jul 07;10(7): [PMID: 32645877]
  31. BMC Genet. 2010 Oct 15;11:94 [PMID: 20950446]
  32. Bioinformatics. 2008 Jun 1;24(11):1403-5 [PMID: 18397895]
  33. Commun Biol. 2023 Oct 17;6(1):1035 [PMID: 37848497]
  34. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  35. Trends Ecol Evol. 2010 Sep;25(9):520-9 [PMID: 20688414]
  36. Evolution. 1984 Nov;38(6):1358-1370 [PMID: 28563791]

Word Cloud

Created with Highcharts 10.0.0populationsgeneticreleasepopulationdiversitymayintrogressionestablishmentnativetroutdownstreamsitegenesindicatorscarriedconservationmanagementgeneticallyenvironmentpanelmonitorbrownreleasedoccurlakeshigherspreadNaturalReleasedmonitoringusedGeneticTranslocationseitherunintentionallyintentionallyreasonscasestranslocatedimpactnaturalviaUnderstandingbackgroundaffectnovelpotentialrisksimportantbiodiversityusing96SNPstwoecologicallydistinctmountainlakesystemcentralSwedenprior1979firstthreedecades5-6generationssevenfindextensivehybridizationoccurredexistexaminedGenesnonmigratoryremaineddegreeareaclosemigratoryhabitatestablishedexhibitlevelsstream-resident~15 kmwaterfallactsupstreammigrationbarrierfishlowrates3%-8%RecentlyadoptedpartlyabledetectemphasizingusefulnessSNPstudyprovidessimilarpicturepreviouslyallozymesshowingoldermarkersystemsfewerlocistillusefuldescribingstructureMonitoringBrownTroutNovelEnvironment:EstablishmentImpactPopulationsSalmotruttagenetics

Similar Articles

Cited By