Estimating Spatially Explicit Survival and Mortality Risk From Telemetry Data With Thinned Point Process Models.

Joseph M Eisaguirre, Madeleine G Lohman, Graham G Frye, Heather E Johnson, Thomas V Riecke, Perry J Williams
Author Information
  1. Joseph M Eisaguirre: U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA. ORCID
  2. Madeleine G Lohman: Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA. ORCID
  3. Graham G Frye: Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
  4. Heather E Johnson: U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA. ORCID
  5. Thomas V Riecke: Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, USA. ORCID
  6. Perry J Williams: Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA. ORCID

Abstract

Mortality risk for animals often varies spatially and can be linked to how animals use landscapes. While numerous studies collect telemetry data on animals, the focus is typically on the period when animals are alive, even though there is important information that could be gleaned about mortality risk. We introduce a thinned spatial point process (SPP) modelling framework that couples relative abundance and space use with a mortality process to formally treat the occurrence of mortality events across the landscape as a spatial process. We show how this model can be embedded in a hierarchical statistical framework and fit to telemetry data to make inferences about how spatial covariates drive both space use and mortality risk. We apply the method to two data sets to study the effects of roads and habitat on spatially explicit mortality risk: (1) VHF telemetry data collected for willow ptarmigan in Alaska, and (2) hourly GPS telemetry data collected for black bears in Colorado. These case studies demonstrate the applicability of this method for different species and data types, making it broadly useful in enabling inferences about the mechanisms influencing animal survival and spatial population processes while formally treating survival as a spatial process, especially as the development and implementation of joint analyses continue to progress.

Keywords

References

  1. Aarts, G., J. Fieberg, and J. Matthiopoulos. 2012. “Comparative Interpretation of Count, Presence–Absence and Point Methods for Species Distribution Models.” Methods in Ecology and Evolution 3: 177–187. https://doi.org/10.1111/j.2041‐210X.2011.00141.x.
  2. Baddeley, A., E. Rubak, and R. Turner. 2016. Spatial Point Patterns: Methodology and Applications With R. CRC Press.
  3. Berliner, L. M. 1996. “Hierarchical Bayesian Time Series Models.” In Maximum Entropy and Bayesian Methods, edited by K. M. Hanson and R. N. Silver, 15–22. Springer Netherlands.
  4. Boyce, M. S., C. J. Johnson, E. H. Merrill, S. E. Nielsen, E. J. Solberg, and B. van Moorter. 2016. “REVIEW: Can Habitat Selection Predict Abundance?” Journal of Animal Ecology 85: 11–20. https://doi.org/10.1111/1365‐2656.12359.
  5. Chandler, R. B., J. Hepinstall‐Cymerman, S. Merker, H. Abernathy‐Conners, and R. J. Cooper. 2018. “Characterizing Spatio‐Temporal Variation in Survival and Recruitment With Integrated Population Models.” Auk 135: 409–426. https://doi.org/10.1642/AUK‐17‐181.1.
  6. Cressie, N., and C. K. Wikle. 2011. Statistics for Spatio‐Temporal Data. John Wiley & Sons, Inc.
  7. Cressie, N. A. C. 1993. Statistics for Spatial Data. John Wiley & Sons, Inc.
  8. Davidson, S. C., G. Bohrer, E. Gurarie, et al. 2020. “Ecological Insights From Three Decades of Animal Movement Tracking Across a Changing Arctic.” Science 370: 712–715. https://doi.org/10.1126/science.abb7080.
  9. de Valpine, P., C. Paciorek, D. Turek, et al. 2023. “NIMBLE: MCMC, Particle Filtering, and Programmable Hierarchical Modeling.” https://cran.r‐project.org/package=nimble.
  10. de Valpine, P., D. Turek, C. Paciorek, C. Anderson‐Bergman, D. Temple Lang, and R. Bodik. 2017. “Programming With Models: Writing Statistical Algorithms for General Model Structures With NIMBLE.” Journal of Computational and Graphical Statistics 26: 403–417. https://doi.org/10.1080/10618600.2016.1172487.
  11. DeCesare, N. J., M. Hebblewhite, M. Bradley, D. Hervieux, L. Neufeld, and M. Musiani. 2014. “Linking Habitat Selection and Predation Risk to Spatial Variation in Survival.” Journal of Animal Ecology 83: 343–352. https://doi.org/10.1111/1365‐2656.12144.
  12. Delibes, M., P. Gaona, and P. Ferreras. 2001. “Effects of an Attractive Sink Leading Into Maladaptive Habitat Selection.” American Naturalist 158: 277–285. https://doi.org/10.1086/321319.
  13. DeMars, C. A., and S. Boutin. 2018. “Nowhere to Hide: Effects of Linear Features on Predator–Prey Dynamics in a Large Mammal System.” Journal of Animal Ecology 87: 274–284. https://doi.org/10.1111/1365‐2656.12760.
  14. Eisaguirre, J. M. 2025. “Thinned Point Process Models for Telemetry Data (Ver 1.0.0, February 2025): U.S. Geological Survey Software Release.” https://doi.org/10.5066/P9HSN8PV.
  15. Eisaguirre, J. M., P. J. Williams, J. C. Brockman, et al. 2023. “A Hierarchical Modelling Framework for Estimating Individual‐ and Population‐Level Reproductive Success From Movement Data.” Methods in Ecology and Evolution 14: 2110–2122. https://doi.org/10.1111/2041‐210X.14159.
  16. Eisaguirre, J. M., P. J. Williams, and M. B. Hooten. 2024. “Rayleigh Step‐Selection Functions and Connections to Continuous‐Time Mechanistic Movement Models.” Movement Ecology 12: 14. https://doi.org/10.1186/s40462‐023‐00442‐w.
  17. Ellis, K. S., M. J. Anteau, G. J. MacDonald, et al. 2023. “Data Integration Reveals Dynamic and Systematic Patterns of Breeding Habitat Use by a Threatened Shorebird.” Scientific Reports 13: 6087. https://doi.org/10.1038/s41598‐023‐32886‐w.
  18. Fernández‐López, J., P. Acevedo, S. Illanas, J. A. Blanco‐Aguiar, J. Vicente, and O. Gimenez. 2025. “Game Target‐Group: Implementing Inhomogeneous Poisson Point Process to Estimate Animal Abundance From Harvest Data.” Methods in Ecology and Evolution 16: 170–182. https://doi.org/10.1111/2041‐210X.14458.
  19. Fieberg, J., J. Signer, B. Smith, and T. Avgar. 2021. “A ‘How to’ Guide for Interpreting Parameters in Habitat‐Selection Analyses.” Journal of Animal Ecology 90: 1027–1043. https://doi.org/10.1111/1365‐2656.13441.
  20. Fleming, C. H., W. F. Fagan, T. Mueller, K. A. Olson, P. Leimgruber, and J. M. Calabrese. 2016. “Estimating Where and How Animals Travel: An Optimal Framework for Path Reconstruction From Autocorrelated Tracking Data.” Ecology 97: 576–582. https://doi.org/10.1890/15‐1607.1.
  21. Frye, G. G., M. S. Lindberg, and R. A. Merizon. 2022. “Differential Survival in the Presence of Spatially Structured Ptarmigan Harvest Suggests Additive Mortality.” Journal of Wildlife Management 86: e22156. https://doi.org/10.1002/jwmg.22156.
  22. Gardner, B., B. T. McClintock, S. J. Converse, and N. J. Hostetter. 2022. “Integrated Animal Movement and Spatial Capture‐Recapture Models: Simulation, Implementation, and Inference.” Ecology 103, no. 10: e3771. https://doi.org/10.1002/ecy.3771.
  23. Gelfand, A. E., and S. Shirota. 2019. “Preferential Sampling for Presence/Absence Data and for Fusion of Presence/Absence Data With Presence‐Only Data.” Ecological Monographs 89: e01372. https://doi.org/10.1002/ecm.1372.
  24. Gelfand, A. E., and A. F. Smith. 1990. “Sampling‐Based Approaches to Calculating Marginal Densities.” Journal of the American Statistical Association 85: 398–409. https://doi.org/10.1080/01621459.1990.10476213.
  25. Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 1995. Bayesian Data Analysis. Chapman and Hall/CRC.
  26. Hefley, T. J., and M. B. Hooten. 2016. “Hierarchical Species Distribution Models.” Current Landscape Ecology Reports 1: 87–97. https://doi.org/10.1007/s40823‐016‐0008‐7.
  27. Hobbs, N. T., and M. B. Hooten. 2015. Bayesian Models: A Statistical Primer for Ecologists. Princeton University Press.
  28. Hooten, M. B., and T. J. Hefley. 2019. Bringing Bayesian Models to Life. CRC Press.
  29. Hooten, M. B., D. S. Johnson, B. T. McClintock, and J. M. Morales. 2017. Animal Movement: Statistical Models for Telemetry Data. CRC Press.
  30. Hooten, M. B., X. Lu, M. J. Garlick, and J. A. Powell. 2020. “Animal Movement Models With Mechanistic Selection Functions.” Spatial Statistics 37: 100406. https://doi.org/10.1016/j.spasta.2019.100406.
  31. Johnson, D. S., M. B. Hooten, and C. E. Kuhn. 2013. “Estimating Animal Resource Selection From Telemetry Data Using Point Process Models.” Journal of Animal Ecology 82: 1155–1164. https://doi.org/10.1111/1365‐2656.12087.
  32. Johnson, H. E., S. W. Breck, S. Baruch‐Mordo, et al. 2015. “Shifting Perceptions of Risk and Reward: Dynamic Selection for Human Development by Black Bears in the Western United States.” Biological Conservation 187: 164–172. https://doi.org/10.1016/j.biocon.2015.04.014.
  33. Johnson, H. E., D. L. Lewis, and S. W. Breck. 2020. “Individual and Population Fitness Consequences Associated With Large Carnivore Use of Residential Development.” Ecosphere 11: e03098. https://doi.org/10.1002/ecs2.3098.
  34. Johnson, H. E., D. L. Lewis, S. A. Lischka, and S. W. Breck. 2018. “Assessing Ecological and Social Outcomes of a Bear‐Proofing Experiment.” Journal of Wildlife Management 82: 1102–1114. https://doi.org/10.1002/jwmg.21472.
  35. Kauffman, M. J., N. Varley, D. W. Smith, D. R. Stahler, D. R. MacNulty, and M. S. Boyce. 2007. “Landscape Heterogeneity Shapes Predation in a Newly Restored Predator–Prey System.” Ecology Letters 10: 690–700. https://doi.org/10.1111/j.1461‐0248.2007.01059.x.
  36. Kéry, M., and J. A. Royle. 2015. Applied Hierarchical Modeling in Ecology—Modeling Distribution, Abundance and Species Richness Using R and BUGS. 1: Prelude and Static Models. Elsevier, Academic Press.
  37. Laufenberg, J. S., H. E. Johnson, P. F. Doherty, and S. W. Breck. 2018. “Compounding Effects of Human Development and a Natural Food Shortage on a Black Bear Population Along a Human Development‐Wildland Interface.” Biological Conservation 224: 188–198. https://doi.org/10.1016/j.biocon.2018.05.004.
  38. Lima, S. L., K. L. Wiebe, and L. M. Dill. 1987. “Protective Cover and the Use of Space by Finches: Is Closer Better?” Oikos 50: 225–230. https://doi.org/10.2307/3566005.
  39. Milleret, C., S. Dey, P. Dupont, et al. 2023. “Estimating Spatially Variable and Density‐Dependent Survival Using Open‐Population Spatial Capture–Recapture Models.” Ecology 104, no. 2: e3934. https://doi.org/10.1002/ecy.3934.
  40. Nielsen, S. E., S. Herrero, M. S. Boyce, et al. 2004. “Modelling the Spatial Distribution of Human‐Caused Grizzly Bear Mortalities in the Central Rockies Ecosystem of Canada.” Biological Conservation 120: 101–113. https://doi.org/10.1016/j.biocon.2004.02.020.
  41. Northrup, J. M., and B. D. Gerber. 2018. “A Comment on Priors for Bayesian Occupancy Models.” PLoS One 13: e0192819. https://doi.org/10.1371/journal.pone.0192819.
  42. Northrup, J. M., E. Vander Wal, M. Bonar, et al. 2022. “Conceptual and Methodological Advances in Habitat‐Selection Modeling: Guidelines for Ecology and Evolution.” Ecological Applications 32: e02470. https://doi.org/10.1002/eap.2470.
  43. Péron, G., Y. Ferrand, F. Gossmann, C. Bastat, M. Guenezan, and O. Gimenez. 2011. “Nonparametric Spatial Regression of Survival Probability: Visualization of Population Sinks in Eurasian Woodcock.” Ecology 92: 1672–1679. https://doi.org/10.1890/10‐2224.1.
  44. R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R‐project.org/.
  45. Renner, I. W., J. Elith, A. Baddeley, et al. 2015. “Point Process Models for Presence‐Only Analysis.” Methods in Ecology and Evolution 6: 366–379. https://doi.org/10.1111/2041‐210X.12352.
  46. Renner, I. W., and D. I. Warton. 2013. “Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology.” Biometrics 69: 274–281. https://doi.org/10.1111/j.1541‐0420.2012.01824.x.
  47. Ribeiro Jr, P. J., P. J. Diggle, O. Christensen, et al. 2020. “Package ‘geoR’.” R package version 1.8 1.
  48. Robertson, B. A., and R. L. Hutto. 2006. “A Framework for Understanding Ecological Traps and an Evaluation of Existing Evidence.” Ecology 87: 1075–1085. https://doi.org/10.1890/0012‐9658(2006)87[1075:AFFUET]2.0.CO;2.
  49. Royle, J. A., R. B. Chandler, C. C. Sun, and A. K. Fuller. 2013. “Integrating Resource Selection Information With Spatial Capture–Recapture.” Methods in Ecology and Evolution 4: 520–530. https://doi.org/10.1111/2041‐210X.12039.
  50. Royle, J. A., and J. A. Dubovsky. 2001. “Modeling Spatial Variation in Waterfowl Band‐Recovery Data.” Journal of Wildlife Management 65: 726–737. https://doi.org/10.2307/3803023.
  51. Saracco, J. F., J. A. Royle, D. F. DeSante, and B. Gardner. 2010. “Modeling Spatial Variation in Avian Survival and Residency Probabilities.” Ecology 91: 1885–1891. https://doi.org/10.1890/09‐0705.1.
  52. Schaub, M., and F. Abadi. 2011. “Integrated Population Models: A Novel Analysis Framework for Deeper Insights Into Population Dynamics.” Journal of Ornithology 152: 227–237. https://doi.org/10.1007/s10336‐010‐0632‐7.
  53. Sih, A. 1984. “The Behavioral Response Race Between Predator and Prey.” American Naturalist 123: 143–150. https://doi.org/10.1086/284193.
  54. Turchin, P. 1991. “Translating Foraging Movements in Heterogeneous Environments Into the Spatial Distribution of Foragers.” Ecology 72: 1253–1266.
  55. Wakefield, J., and H. Lyons. 2010. “Spatial Aggregation and the Ecological Fallacy.” In Handbook of Spatial Statistics, 541–558. CRC Press.
  56. Warton, D. I., I. W. Renner, and D. Ramp. 2013. “Model‐Based Control of Observer Bias for the Analysis of Presence‐Only Data in Ecology.” PLoS One 8: e79168. https://doi.org/10.1371/journal.pone.0079168.
  57. Xu, W., L. C. Gigliotti, R. Royauté, H. Sawyer, and A. D. Middleton. 2023. “Fencing Amplifies Individual Differences in Movement With Implications on Survival for Two Migratory Ungulates.” Journal of Animal Ecology 92: 677–689. https://doi.org/10.1111/1365‐2656.13879.
  58. Yanco, S. W., C. Rutz, B. Abrahms, et al. 2024. “Tracking Individual Animals Can Reveal the Mechanisms of Species Loss.” Trends in Ecology & Evolution 40, no. 1: 47–56. https://doi.org/10.1016/j.tree.2024.09.008.

Grants

  1. /U.S. Geological Survey
  2. /National Science Foundation Graduate Research Fellowship Program
  3. /Institute for Wetland and Waterfowl Research Bonnycastle Fellowship for Wetland and Waterfowl Research

MeSH Term

Animals
Telemetry
Alaska
Ecosystem
Models, Biological
Mortality
Geographic Information Systems

Word Cloud

Created with Highcharts 10.0.0datamortalityspatialtelemetryprocessriskanimalsusespatiallyspacesurvivalMortalitycanstudiespointframeworkformallymodelinferencesmethodexplicitcollectedspeciesoftenvarieslinkedlandscapesnumerouscollectfocustypicallyperiodaliveeventhoughimportantinformationgleanedintroducethinnedSPPmodellingcouplesrelativeabundancetreatoccurrenceeventsacrosslandscapeshowembeddedhierarchicalstatisticalfitmakecovariatesdriveapplytwosetsstudyeffectsroadshabitatrisk:1VHFwillowptarmiganAlaska2hourlyGPSblackbearsColoradocasedemonstrateapplicabilitydifferenttypesmakingbroadlyusefulenablingmechanismsinfluencinganimalpopulationprocessestreatingespeciallydevelopmentimplementationjointanalysescontinueprogressEstimatingSpatiallyExplicitSurvivalRiskTelemetryDataThinnedPointProcessModelsmovementecologyresourceselectionstatisticsdistribution

Similar Articles

Cited By