Fatty acid composition in the vaginal tract of cis-gender women: canary in coal mines for reproductive health?

Karine Dufresne
Author Information
  1. Karine Dufresne: Département des sciences biologiques, Université du Québec à Montréal, Montréal, Canada. dufresne.karine.3@uqam.ca.

Abstract

The vaginal tract of cis-gender women of reproductive age is inhabited by communities of bacteria generally dominated by one of four Lactobacillus species. These bacteria are important for the reproductive health of women and favor better outcomes, including fertility, pregnancy leading to term and protection against infections. Past studies have focused on the role of carbohydrates in the balance of vaginal communities, and the role of fatty acids has been underestimated. However, small- to long-chain fatty acids present few properties that, in combination with sugar metabolism, affect the outcomes of the health or disease within the vaginal communities. Herein, we explore the origins of fatty acids in the vaginal tract as well as their roles in the bacterial life cycle in this environment. We also detail the putative impact of vaginal FAs on S. aureus, one of the etiologic agents of aerobic vaginitis. Finally, we discuss their potential for prevention or therapy in women of reproductive age.

Keywords

References

  1. J Bacteriol. 2023 Feb 22;205(2):e0039322 [PMID: 36744900]
  2. J Bacteriol. 2016 Sep 09;198(19):2732-42 [PMID: 27457715]
  3. J Bacteriol. 2018 Sep 10;200(19): [PMID: 30012726]
  4. J Infect Dis. 2014 Aug 1;210(3):338-43 [PMID: 24511102]
  5. Hum Reprod. 2001 Sep;16(9):1809-13 [PMID: 11527880]
  6. BJOG. 2015 Nov;122(12):1580-5 [PMID: 25196575]
  7. Gynecol Endocrinol. 2018 Jun;34(6):451-455 [PMID: 29271266]
  8. Front Physiol. 2015 Jun 02;6:164 [PMID: 26082720]
  9. J Med Microbiol. 1992 Apr;36(4):288-92 [PMID: 1560451]
  10. Infect Immun. 2020 Jul 21;88(8): [PMID: 32513856]
  11. J Med Microbiol. 1992 Apr;36(4):293-8 [PMID: 1560452]
  12. Sci Rep. 2018 Jul 2;8(1):9942 [PMID: 29967393]
  13. Infect Immun. 2025 Feb 18;93(2):e0043924 [PMID: 39840991]
  14. mBio. 2019 Dec 24;10(6): [PMID: 31874913]
  15. Nat Microbiol. 2023 Sep;8(9):1641-1652 [PMID: 37563289]
  16. Mediators Inflamm. 2019 Nov 3;2019:8495913 [PMID: 31780872]
  17. PLoS One. 2017 Jul 11;12(7):e0181135 [PMID: 28700747]
  18. Trends Microbiol. 2022 Mar;30(3):241-253 [PMID: 34218980]
  19. BMC Infect Dis. 2024 Nov 5;24(1):1249 [PMID: 39501190]
  20. PLoS Pathog. 2017 Feb 9;13(2):e1006144 [PMID: 28182769]
  21. PLoS One. 2018 Aug 22;13(8):e0202401 [PMID: 30133508]
  22. Trends Microbiol. 2020 Sep;28(9):753-768 [PMID: 32359781]
  23. EBioMedicine. 2022 Mar;77:103891 [PMID: 35220042]
  24. J Bacteriol. 2001 Feb;183(4):1113-23 [PMID: 11157922]
  25. FEMS Microbiol Rev. 2010 Nov;34(6):952-85 [PMID: 20412306]
  26. J Bacteriol. 2022 Oct 18;204(10):e0026922 [PMID: 36106854]
  27. Sci Rep. 2024 May 23;14(1):11798 [PMID: 38782975]
  28. Arch Gynecol Obstet. 2019 Jul;300(1):1-6 [PMID: 30953190]
  29. Nat Microbiol. 2023 Nov;8(11):2183-2195 [PMID: 37884815]
  30. Biochem J. 1960 Aug;76:246-53 [PMID: 14437832]
  31. Am J Obstet Gynecol. 2011 Feb;204(2):120.e1-5 [PMID: 20832044]
  32. Int J Mol Sci. 2018 Apr 08;19(4): [PMID: 29642500]
  33. Sci Rep. 2019 Oct 1;9(1):14095 [PMID: 31575935]
  34. Can J Infect Dis Med Microbiol. 2015 Jul-Aug;26(4):218-20 [PMID: 26361491]
  35. Microbiome. 2019 Mar 29;7(1):49 [PMID: 30925932]
  36. Sci Rep. 2023 Jun 4;13(1):9061 [PMID: 37271782]
  37. Commun Biol. 2024 May 15;7(1):572 [PMID: 38750133]
  38. Rev Infect Dis. 1990 Sep-Oct;12(5):856-72 [PMID: 2237129]
  39. Microbiol Spectr. 2021 Dec 22;9(3):e0154621 [PMID: 34817231]
  40. mSphere. 2024 Jul 30;9(7):e0045024 [PMID: 38926904]
  41. Am J Obstet Gynecol. 2011 May;204(5):450.e1-7 [PMID: 21444061]
  42. Nat Commun. 2023 Aug 17;14(1):4997 [PMID: 37591872]
  43. Microbiology (Reading). 2010 Feb;156(Pt 2):392-399 [PMID: 19910411]
  44. mSphere. 2020 Dec 9;5(6): [PMID: 33298571]
  45. Antimicrob Agents Chemother. 2014 Jun;58(6):3411-20 [PMID: 24709255]
  46. Infect Immun. 2004 Nov;72(11):6206-10 [PMID: 15501745]
  47. J Leukoc Biol. 2024 Feb 23;115(3):536-546 [PMID: 37992073]
  48. Mol Microbiol. 2023 Sep;120(3):425-438 [PMID: 37501506]
  49. BMC Genomics. 2010 Jun 11;11:375 [PMID: 20540756]
  50. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 [PMID: 20534435]
  51. Trends Microbiol. 2024 Nov;32(11):1106-1118 [PMID: 38729839]
  52. Metabolites. 2023 Jan 25;13(2): [PMID: 36837795]
  53. J Bacteriol. 2024 Mar 21;206(3):e0044723 [PMID: 38334326]
  54. J Bacteriol. 2008 Jun;190(11):3896-903 [PMID: 18390664]
  55. J Bacteriol. 2020 Oct 22;202(22): [PMID: 32868405]
  56. FEMS Immunol Med Microbiol. 1993 Apr;6(4):251-64 [PMID: 8499891]
  57. Arch Oral Biol. 1989;34(4):229-37 [PMID: 2597017]
  58. J Bacteriol. 2019 Jan 11;201(3): [PMID: 30455282]
  59. J Bacteriol. 2020 Jun 25;202(14): [PMID: 32366591]
  60. Trends Microbiol. 2024 Mar;32(3):228-230 [PMID: 38182522]
  61. EClinicalMedicine. 2020 Mar 10;21:100308 [PMID: 32382713]
  62. Infect Immun. 2014 May;82(5):1813-22 [PMID: 24549328]
  63. J Infect Dis. 2021 Jul 2;224(1):141-150 [PMID: 33170275]
  64. BMC Microbiol. 2019 Jan 14;19(1):13 [PMID: 30642259]
  65. Infect Immun. 1999 Oct;67(10):5170-5 [PMID: 10496892]
  66. Sci Rep. 2021 Aug 18;11(1):16771 [PMID: 34408170]
  67. Infect Immun. 2023 May 16;91(5):e0039022 [PMID: 37071014]
  68. Reprod Sci. 2015 Nov;22(11):1393-8 [PMID: 25878210]
  69. Heliyon. 2023 Mar 14;9(3):e14562 [PMID: 36967966]
  70. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10532-7 [PMID: 25002480]
  71. NPJ Biofilms Microbiomes. 2022 Feb 21;8(1):8 [PMID: 35190575]
  72. PLoS One. 2011;6(10):e26732 [PMID: 22046340]
  73. Diabetes Res Clin Pract. 2020 Nov;169:108418 [PMID: 32891692]
  74. Infect Immun. 2013 Dec;81(12):4544-50 [PMID: 24082080]
  75. Res Microbiol. 2017 Nov - Dec;168(9-10):845-858 [PMID: 28502874]
  76. Cell. 2024 Sep 19;187(19):5413-5430.e29 [PMID: 39163861]
  77. Front Reprod Health. 2023 Jun 20;5:1167868 [PMID: 37408999]
  78. Metabolites. 2024 Jan 11;14(1): [PMID: 38248848]
  79. Front Immunol. 2020 Sep 10;11:2184 [PMID: 33013918]
  80. AIDS Behav. 2015 Sep;19(9):1701-19 [PMID: 25711295]
  81. Clin Obstet Gynecol. 1993 Mar;36(1):107-21 [PMID: 8435935]
  82. Obstet Gynecol. 1984 Nov;64(5):666-71 [PMID: 6436761]
  83. BJOG. 2002 Jan;109(1):34-43 [PMID: 11845812]
  84. Cell Rep. 2019 Dec 17;29(12):3974-3982.e4 [PMID: 31851927]
  85. J Biol Chem. 2021 Jan-Jun;296:100252 [PMID: 33376139]
  86. Mol Microbiol. 2019 Oct;112(4):1163-1177 [PMID: 31321813]
  87. Am J Reprod Immunol. 2019 Dec;82(6):e13189 [PMID: 31495009]
  88. J Clin Microbiol. 1992 May;30(5):1323-6 [PMID: 1583140]
  89. J Infect Dis. 2019 Aug 30;220(7):1085-1088 [PMID: 30715397]
  90. Mol Microbiol. 2014 Apr;92(2):234-45 [PMID: 24673884]
  91. Front Cell Infect Microbiol. 2020 Jan 10;9:446 [PMID: 31998660]
  92. Children (Basel). 2023 May 26;10(6): [PMID: 37371177]
  93. mBio. 2013 Aug 06;4(4): [PMID: 23919998]

MeSH Term

Female
Humans
Fatty Acids
Vagina
Reproductive Health
Staphylococcus aureus
Lactobacillus
Pregnancy

Chemicals

Fatty Acids

Word Cloud

Created with Highcharts 10.0.0vaginaltractreproductiveacidswomencommunitiesfattycis-genderagebacteriaoneLactobacillushealthoutcomesroleSFattyinhabitedgenerallydominatedfourspeciesimportantfavorbetterincludingfertilitypregnancyleadingtermprotectioninfectionsPaststudiesfocusedcarbohydratesbalanceunderestimatedHoweversmall-long-chainpresentpropertiescombinationsugarmetabolismaffectdiseasewithinHereinexploreoriginswellrolesbacteriallifecycleenvironmentalsodetailputativeimpactFAsaureusetiologicagentsaerobicvaginitisFinallydiscusspotentialpreventiontherapyacidcompositionwomen:canarycoalmineshealth?AureusBacterialvaginosisVaginal

Similar Articles

Cited By