Digital twin-enhanced three-organ microphysiological system for studying drug pharmacokinetics in pregnant women.

Katja Graf, Jos�� Martin Murrieta-Coxca, Tobias Vogt, Sophie Besser, Daria Geilen, Tim Kaden, Anne-Katrin Bothe, Diana Maria Morales-Prieto, Behnam Amiri, Stephan Schaller, Ligaya Kaufmann, Martin Raasch, Ramy M Ammar, Christian Maass
Author Information
  1. Katja Graf: Dynamic42 GmbH, Jena, Germany.
  2. Jos�� Martin Murrieta-Coxca: Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
  3. Tobias Vogt: Dynamic42 GmbH, Jena, Germany.
  4. Sophie Besser: Dynamic42 GmbH, Jena, Germany.
  5. Daria Geilen: Dynamic42 GmbH, Jena, Germany.
  6. Tim Kaden: Dynamic42 GmbH, Jena, Germany.
  7. Anne-Katrin Bothe: Dynamic42 GmbH, Jena, Germany.
  8. Diana Maria Morales-Prieto: Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
  9. Behnam Amiri: MPSlabs, ESQlabs GmbH, Saterland, Germany.
  10. Stephan Schaller: ESQlabs GmbH, Saterland, Germany.
  11. Ligaya Kaufmann: Global Medical Affairs, Bayer Consumer Care AG, Basel, Switzerland.
  12. Martin Raasch: Dynamic42 GmbH, Jena, Germany.
  13. Ramy M Ammar: Global R&D, Bayer Consumer Health, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany.
  14. Christian Maass: MPSlabs, ESQlabs GmbH, Saterland, Germany.

Abstract

Background: Pregnant women represent a vulnerable group in pharmaceutical research due to limited knowledge about drug metabolism and safety of commonly used corticosteroids like prednisone due to ethical and practical constraints. Current preclinical models, including animal studies, fail to accurately replicate human pregnancy conditions, resulting in gaps in drug safety and pharmacokinetics predictions. To address this issue, we used a three-organ microphysiological system (MPS) combined with a digital twin framework, to predict pharmacokinetics and fetal drug exposure.
Methods: The here shown human MPS integrated gut, liver, and placenta models, interconnected via the corresponding vasculature. Using prednisone as a model compound, we simulate oral drug administration and track its metabolism and transplacental transfer. To translate the generated data from MPS to human physiology, computational modelling techniques were developed.
Results: Our results demonstrate that the system maintains cellular integrity and accurately mimics drug dynamics, with predictions closely matching clinical data from pregnant women. Digital twinning closely aligned with the generated experimental data. Long-term exposure simulations confirmed the value of this integrated system for predicting the non-toxic metabolization of prednisone.
Conclusion: This approach may provide a potential non-animal alternative that could contribute to our understanding of drug behavior during pregnancy and may support early-stage drug safety assessment for vulnerable populations.

Keywords

References

  1. Toxicology. 2023 Jan 1;483:153374 [PMID: 36396002]
  2. J Pharmacokinet Biopharm. 1981 Aug;9(4):389-417 [PMID: 7310640]
  3. Lab Chip. 2022 Nov 22;22(23):4574-4592 [PMID: 36322152]
  4. Sci Rep. 2018 Mar 14;8(1):4530 [PMID: 29540740]
  5. J Pediatr. 1972 Nov;81(5):936-45 [PMID: 5086721]
  6. Clin Pharmacol Ther. 2011 Jul;90(1):67-76 [PMID: 21562489]
  7. Placenta. 2022 May;122:29-45 [PMID: 35397340]
  8. RMD Open. 2019 Jan 30;5(1):e000852 [PMID: 30815278]
  9. Nat Biomed Eng. 2020 Apr;4(4):407-420 [PMID: 31988458]
  10. CPT Pharmacometrics Syst Pharmacol. 2021 Jun;10(6):633-644 [PMID: 33946131]
  11. Front Psychiatry. 2017 May 26;8:80 [PMID: 28603504]
  12. PLoS One. 2015 May 26;10(5):e0127934 [PMID: 26010360]
  13. Am J Reprod Immunol. 2015 Jul;74(1):89-97 [PMID: 25753479]
  14. Placenta. 2022 Aug;126:83-89 [PMID: 35785693]
  15. Fundam Clin Pharmacol. 2007 Dec;21(6):659-63 [PMID: 18034668]
  16. Front Pediatr. 2021 Jul 26;9:698611 [PMID: 34381745]
  17. Eur J Pharm Biopharm. 2015 Sep;95(Pt A):77-87 [PMID: 25857839]
  18. Sci Rep. 2019 Jul 3;9(1):9619 [PMID: 31270362]
  19. PLoS One. 2025 Jan 9;20(1):e0314083 [PMID: 39787162]
  20. Biomaterials. 2019 Nov;220:119396 [PMID: 31398556]
  21. Am J Physiol Regul Integr Comp Physiol. 2001 Dec;281(6):R1966-74 [PMID: 11705783]
  22. J Clin Med. 2018 Dec 15;7(12): [PMID: 30558290]
  23. Clin Pharmacokinet. 1990 Aug;19(2):126-46 [PMID: 2199128]
  24. ACS Appl Bio Mater. 2022 May 16;5(5):2273-2284 [PMID: 35380796]
  25. Int J Mol Sci. 2020 Nov 19;21(22): [PMID: 33228194]
  26. Eur J Pharm Sci. 2010 Sep 11;41(1):107-17 [PMID: 20621634]
  27. CPT Pharmacometrics Syst Pharmacol. 2019 May;8(5):316-325 [PMID: 30869201]
  28. Sci Rep. 2023 Aug 16;13(1):13338 [PMID: 37587168]
  29. Am J Obstet Gynecol. 1978 Oct 15;132(4):363-6 [PMID: 707579]
  30. Biomaterials. 2024 Jun;307:122525 [PMID: 38489910]
  31. Sci Rep. 2017 Feb 08;7:42296 [PMID: 28176881]
  32. Biol Pharm Bull. 2019;42(9):1600-1604 [PMID: 31474721]
  33. Front Pharmacol. 2021 May 07;12:667010 [PMID: 34025426]
  34. Biochem Biophys Res Commun. 2017 Jan 8;482(2):323-328 [PMID: 27856254]
  35. J Reprod Immunol. 2019 Feb;131:1-6 [PMID: 30390547]
  36. J Acquir Immune Defic Syndr. 2005 Dec 15;40(5):573-80 [PMID: 16284534]
  37. Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15655-60 [PMID: 12432097]
  38. CPT Pharmacometrics Syst Pharmacol. 2018 Jul;7(7):419-431 [PMID: 29569837]
  39. Front Pediatr. 2021 Nov 03;9:733823 [PMID: 34805038]
  40. Int J Environ Res Public Health. 2022 Nov 28;19(23): [PMID: 36497907]
  41. Cancer Biother Radiopharm. 2015 Sep;30(7):285-90 [PMID: 26172337]
  42. Am J Obstet Gynecol. 2022 Dec;227(6):805-811 [PMID: 35934117]
  43. J Pharmacol Exp Ther. 2017 Jan;360(1):95-105 [PMID: 27760784]
  44. Integr Biol (Camb). 2013 Sep;5(9):1130-40 [PMID: 23817533]
  45. Clin Pharmacol Ther. 2003 Apr;73(4):330-7 [PMID: 12709723]
  46. Nat Biomed Eng. 2020 Apr;4(4):421-436 [PMID: 31988459]
  47. J Clin Med. 2023 Jun 27;12(13): [PMID: 37445348]
  48. Placenta. 2021 May;108:122-133 [PMID: 33810901]
  49. Expert Opin Drug Metab Toxicol. 2007 Aug;3(4):557-71 [PMID: 17696806]
  50. Philos Ethics Humanit Med. 2019 Sep 6;14(1):11 [PMID: 31492178]
  51. Toxicol Sci. 2023 Mar 20;192(1):59-70 [PMID: 36637193]
  52. Clin Pharmacokinet. 2018 Jun;57(6):749-768 [PMID: 28924743]
  53. Clin Transl Sci. 2021 Sep;14(5):1659-1680 [PMID: 33982436]
  54. Lab Chip. 2022 Mar 15;22(6):1187-1205 [PMID: 35107462]
  55. Placenta. 2005 Nov;26(10):842-5 [PMID: 16226134]
  56. Clin Pharmacol Ther. 2015 Mar;97(3):247-62 [PMID: 25670209]
  57. Nat Rev Genet. 2022 Aug;23(8):467-491 [PMID: 35338360]
  58. AAPS J. 2022 Jan 13;24(1):28 [PMID: 35028763]
  59. J Reprod Immunol. 2015 Apr;108:65-71 [PMID: 25817465]
  60. Lab Chip. 2016 Aug 2;16(16):3065-73 [PMID: 27229450]
  61. Sci Rep. 2020 Sep 24;10(1):15606 [PMID: 32973223]
  62. J Environ Sci (China). 2024 Nov;145:75-87 [PMID: 38844325]
  63. J Pharmacokinet Pharmacodyn. 2007 Jun;34(3):355-72 [PMID: 17318442]
  64. Stat Med. 1984 Apr-Jun;3(2):143-52 [PMID: 6463451]
  65. Placenta. 2021 Nov;115:70-77 [PMID: 34562829]
  66. Biomaterials. 2015 Dec;71:119-131 [PMID: 26322723]
  67. CPT Pharmacometrics Syst Pharmacol. 2019 Dec;8(12):878-882 [PMID: 31671256]
  68. Sci Rep. 2016 Feb 23;6:21868 [PMID: 26902749]
  69. Eur J Epidemiol. 2014 Oct;29(10):725-34 [PMID: 25179792]
  70. Micromachines (Basel). 2021 Jul 27;12(8): [PMID: 34442506]
  71. Br Med J. 1967 Apr 22;2(5546):205-7 [PMID: 6023103]
  72. Womens Health Issues. 2013 Jan;23(1):e39-45 [PMID: 23312713]
  73. J Pharm Sci. 2013 Sep;102(9):2930-40 [PMID: 23681608]
  74. Hepatology. 2007 Apr;45(4):957-67 [PMID: 17393521]
  75. Cell Mol Life Sci. 2023 Jan 18;80(2):44 [PMID: 36652019]
  76. J Clin Endocrinol Metab. 2002 Dec;87(12):5695-701 [PMID: 12466373]
  77. Am J Obstet Gynecol. 1977 Feb 1;127(3):264-7 [PMID: 835623]
  78. AAPS J. 2017 Sep;19(5):1499-1512 [PMID: 28752430]
  79. Open Biol. 2022 Mar;12(3):210333 [PMID: 35232251]
  80. Biomaterials. 2022 Aug;287:121632 [PMID: 35728409]
  81. Reproduction. 2020 Dec;160(6):R129-R143 [PMID: 33112767]
  82. J Clin Pharmacol. 2018 Sep;58(9):1223-1232 [PMID: 29733485]
  83. J Clin Epidemiol. 1996 Dec;49(12):1373-9 [PMID: 8970487]
  84. CPT Pharmacometrics Syst Pharmacol. 2016 Oct;5(10):516-531 [PMID: 27653238]
  85. Front Pharmacol. 2023 Aug 17;14:1241815 [PMID: 37663251]

Word Cloud

Created with Highcharts 10.0.0drugsafetypharmacokineticssystemwomenprednisonehumanpregnancyMPSdatavulnerableduemetabolismusedmodelsaccuratelypredictionsthree-organmicrophysiologicalexposureintegratedgeneratedcomputationalmodellingcloselypregnantDigitalmayBackground:PregnantrepresentgrouppharmaceuticalresearchlimitedknowledgecommonlycorticosteroidslikeethicalpracticalconstraintsCurrentpreclinicalincludinganimalstudiesfailreplicateconditionsresultinggapsaddressissuecombineddigitaltwinframeworkpredictfetalMethods:showngutliverplacentainterconnectedviacorrespondingvasculatureUsingmodelcompoundsimulateoraladministrationtracktransplacentaltransfertranslatephysiologytechniquesdevelopedResults:resultsdemonstratemaintainscellularintegritymimicsdynamicsmatchingclinicaltwinningalignedexperimentalLong-termsimulationsconfirmedvaluepredictingnon-toxicmetabolizationConclusion:approachprovidepotentialnon-animalalternativecontributeunderstandingbehaviorsupportearly-stageassessmentpopulationstwin-enhancedstudyingorgan-on-chip

Similar Articles

Cited By