Predicting tuberculosis drug efficacy in preclinical and clinical models from data.

Janice J N Goh, Anu Patel, Bernard Ngara, Rob C van Wijk, Natasha Strydom, Qianwen Wang, Nhi Van, Tracy M Washington, Eric L Nuermberger, Bree B Aldridge, Christine Roubert, Jansy Sarathy, V��ronique Dartois, Rada M Savic
Author Information
  1. Janice J N Goh: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
  2. Anu Patel: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
  3. Bernard Ngara: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
  4. Rob C van Wijk: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
  5. Natasha Strydom: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
  6. Qianwen Wang: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
  7. Nhi Van: Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, MA, USA.
  8. Tracy M Washington: Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, MA, USA.
  9. Eric L Nuermberger: Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  10. Bree B Aldridge: Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, MA, USA.
  11. Christine Roubert: Evotec ID (LYON) SAS, Lyon, France.
  12. Jansy Sarathy: Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
  13. V��ronique Dartois: Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
  14. Rada M Savic: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.

Abstract

Multiple potency assays are used to evaluate compounds against , but a consensus on clinically relevant assays is lacking. We aimed to identify an assay signature that predicts preclinical efficacy and early clinical outcome. Thirty-one unique assays were compiled for 10 TB drugs. EC values were compared to pharmacokinetic-pharmacodynamic (PK-PD)-model-derived EC values from mice evaluated via multinomial regression. External validation of best-performing assay combinations was performed using five new TB drugs. Best-performing assay signatures for acute and subacute infections were described by assays that reproduce conditions found in macrophages and foamy macrophages and chronic infection by the caseum assay. Subsequent simulated mouse bacterial burden over time using predicted EC was within 2-fold of observations. This study helps us identify clinically relevant assays and prioritize successful drug candidates, saving resources and accelerating clinical success.

Keywords

References

  1. Antimicrob Agents Chemother. 2018 Jul 27;62(8): [PMID: 29866874]
  2. Nat Rev Microbiol. 2022 Nov;20(11):685-701 [PMID: 35478222]
  3. Antimicrob Agents Chemother. 2013 Apr;57(4):1648-53 [PMID: 23335744]
  4. ACS Infect Dis. 2019 Aug 9;5(8):1433-1445 [PMID: 31184461]
  5. Front Microbiol. 2018 May 23;9:1028 [PMID: 29875747]
  6. J Clin Microbiol. 1998 Feb;36(2):362-6 [PMID: 9466742]
  7. Antimicrob Agents Chemother. 2015 Oct;59(10):6521-38 [PMID: 26239979]
  8. Antimicrob Agents Chemother. 2022 Jun 21;66(6):e0013222 [PMID: 35607978]
  9. Infect Drug Resist. 2023 Aug 07;16:5055-5064 [PMID: 37576523]
  10. Antimicrob Agents Chemother. 2018 Jan 25;62(2): [PMID: 29203492]
  11. Front Immunol. 2021 Jun 28;12:668060 [PMID: 34276658]
  12. Antimicrob Agents Chemother. 2005 Nov;49(11):4778-80 [PMID: 16251329]
  13. J Biol Chem. 2008 Sep 12;283(37):25273-25280 [PMID: 18625705]
  14. Antimicrob Agents Chemother. 2012 May;56(5):2223-30 [PMID: 22391538]
  15. Clin Microbiol Rev. 2020 Apr 1;33(3): [PMID: 32238365]
  16. Immunol Rev. 2015 Mar;264(1):288-307 [PMID: 25703567]
  17. Tuberculosis (Edinb). 2004;84(3-4):144-58 [PMID: 15207484]
  18. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8560-5 [PMID: 10890913]
  19. PLoS Med. 2007 Mar;4(3):e120 [PMID: 17388672]
  20. Antimicrob Agents Chemother. 2021 Jul 16;65(8):e0028221 [PMID: 34097493]
  21. Nat Rev Immunol. 2017 Nov;17(11):691-702 [PMID: 28736436]
  22. Nat Rev Microbiol. 2022 Sep;20(9):529-541 [PMID: 35365812]
  23. Antimicrob Agents Chemother. 2020 Feb 21;64(3): [PMID: 31907182]
  24. Clin Infect Dis. 2016 Oct 1;63(7):853-67 [PMID: 27621353]
  25. Eur Respir J. 2023 Aug 31;62(2): [PMID: 37321622]
  26. Tuberculosis (Edinb). 2023 Mar;139:102318 [PMID: 36889104]
  27. PLoS Med. 2019 Dec 10;16(12):e1002884 [PMID: 31821323]
  28. Antimicrob Agents Chemother. 2018 Jul 27;62(8): [PMID: 29866864]
  29. Antimicrob Agents Chemother. 2015 Jan;59(1):136-44 [PMID: 25331696]
  30. J Antimicrob Chemother. 2015 Mar;70(3):857-67 [PMID: 25587994]
  31. PLoS One. 2019 Oct 7;14(10):e0222970 [PMID: 31589621]
  32. Antimicrob Agents Chemother. 2021 Sep 17;65(10):e0069321 [PMID: 34339275]
  33. J Clin Epidemiol. 2006 Oct;59(10):1087-91 [PMID: 16980149]
  34. Cell. 2023 Mar 2;186(5):1013-1025.e24 [PMID: 36827973]
  35. Antimicrob Agents Chemother. 2007 Apr;51(4):1380-5 [PMID: 17210775]
  36. J Bacteriol. 2009 Aug;191(15):4714-21 [PMID: 19465648]
  37. Cell Syst. 2021 Nov 17;12(11):1046-1063.e7 [PMID: 34469743]

Word Cloud

Created with Highcharts 10.0.0assaysassayclinicalECclinicallyrelevantidentifypreclinicalefficacyTBdrugsvaluesusingmacrophagesdrugsciencesMultiplepotencyusedevaluatecompoundsconsensuslackingaimedsignaturepredictsearlyoutcomeThirty-oneuniquecompiled10comparedpharmacokinetic-pharmacodynamicPK-PD-model-derivedmiceevaluatedviamultinomialregressionExternalvalidationbest-performingcombinationsperformedfivenewBest-performingsignaturesacutesubacuteinfectionsdescribedreproduceconditionsfoundfoamychronicinfectioncaseumSubsequentsimulatedmousebacterialburdentimepredictedwithin2-foldobservationsstudyhelpsusprioritizesuccessfulcandidatessavingresourcesacceleratingsuccessPredictingtuberculosismodelsdatabioinformaticsbiologicalnaturalpharmacoinformaticspharmacology

Similar Articles

Cited By