Dopamine Toxicity Induces ROS-Dependent Death of Murine Neuroblastoma Cells: Impact on the Interactions of Cofilin With UCHL1 and MMP9.

Tapasi Roy, Rachana Banerjee, Abhishek Chatterjee, Snehasikta Swarnakar
Author Information
  1. Tapasi Roy: Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
  2. Rachana Banerjee: JIS Institute of Advanced Studies and Research, JIS University, JIS School of Medical Science and Research Campus, 51, South Nayabaz, GIP Colony, Santragachi, Howrah, West Bengal, 711112, India.
  3. Abhishek Chatterjee: Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
  4. Snehasikta Swarnakar: Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India. snehasiktaiicbidi@gmail.com.

Abstract

The death of dopaminergic neurons, a hallmark event during Parkinson's disease (PD), leads to increased dopamine concentration in the neuronal micro-environment. Keeping this in mind, we intend to understand the impact of elevated dopamine concentration on molecular interactions among proteins and the stability of the neuronal cytoskeleton. We used differentiated N2A cells and exposed them to 100 ��M DA for 24 h. Evaluations of cell death, measurement of the concentration of DA oxidation products and reactive oxygen species (ROS), conventional RT-PCR, western blotting, zymography, reverse zymography, co-immunoprecipitation, mitochondrial transmembrane potential, confocal imaging, and in-silico studies were performed thereon. We observed that a significant number of viable N2A cells underwent ROS-dependent apoptotic cell death under elevated media DA concentrations. An altered transcriptional pattern of alpha-synuclein, UCHL1, and cofilin genes and their respective gene products were also observed. The activity and expression of matrix metalloproteinases9 (MMP9), involved in neuro-inflammation, was enhanced upon DA-exposure. Further, DA exposure also led to degradation of actin cytoskeleton. In silico studies revealed that interactions of Cofilin with UCHL1 and MMP9 were altered in dopamine-rich microenvironment. This result was further validated by co-immunoprecipitation experiments. Collectively our observations with murine Neuroblastoma cells suggest that DA Toxicity alters interaction patterns among intracellular proteins and degrades neuronal cytoskeleton that finally leads to cell death. Our study unveils a new frontier in PD treatment by paving the way for the development of specific drugs targeting the DA altered protein interactions.

Keywords

References

  1. Ju��rez Olgu��n H, Calder��n Guzm��n D, Hern��ndez Garc��a E, Barrag��n Mej��a G (2016) The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev 9730467. https://doi.org/10.1155/2016/9730467
  2. Turcano P, Mielke MM, Bower JH, Parisi JE, Cutsforth-Gregory JK, Ahlskog JE et al (2018) Levodopa-induced dyskinesia in Parkinson disease: A population-based cohort study. Neurology 91:e2238���e2243. https://doi.org/10.1212/WNL.0000000000006643 [DOI: 10.1212/WNL.0000000000006643]
  3. Dion��sio PA, Amaral JD, Rodrigues CMP (2021) Oxidative stress and regulated cell death in Parkinson���s disease. Ageing Res Rev 67:101263. https://doi.org/10.1016/j.arr.2021.101263 [DOI: 10.1016/j.arr.2021.101263]
  4. Bohush A, Niewiadomska G, Filipek A (2018) Role of mitogen activated protein kinase signaling in Parkinson���s disease. Int J Mol Sci 19:2973. https://doi.org/10.3390/ijms19102973 [DOI: 10.3390/ijms19102973]
  5. McKinnon C, De Snoo ML, Gondard E, Neudorfer C, Chau H, Ngana SG et al (2020) Early-onset impairment of the ubiquitin-proteasome system in dopaminergic neurons caused by ��-synuclein. Acta Neuropathol Commun 8:17. https://doi.org/10.1186/s40478-020-0894-0 [DOI: 10.1186/s40478-020-0894-0]
  6. Dolatshahi M, Ranjbar Hameghavandi MH, Sabahi M, Rostamkhani S (2021) Nuclear factor-kappa B (NF-��B) in pathophysiology of Parkinson disease: diverse patterns and mechanisms contributing to neurodegeneration. Eur J Neurosci 15242. https://doi.org/10.1111/ejn.15242
  7. Callizot N, Combes M, Henriques A, Poindron P (2019) Necrosis, apoptosis, necroptosis, three modes of action of dopaminergic neuron neurotoxins. PLoS ONE 14:e0215277. https://doi.org/10.1371/journal.pone.0215277 [DOI: 10.1371/journal.pone.0215277]
  8. McCutcheon RA, Krystal JH, Howes OD (2020) Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 19:15���33. https://doi.org/10.1002/wps.20693 [DOI: 10.1002/wps.20693]
  9. Pan X, Kaminga AC, Wen SW, Wu X, Acheampong K, Liu A (2019) Dopamine and dopamine receptors in Alzheimer���s disease: A systematic review and network Meta-Analysis. Front Aging Neurosci 11:175. https://doi.org/10.3389/fnagi.2019.00175 [DOI: 10.3389/fnagi.2019.00175]
  10. Caroff SN (2020) Recent advances in the Pharmacology of tardive dyskinesia. Clin Psychopharmacol Neurosci 18:493���506. https://doi.org/10.9758/cpn.2020.18.4.493 [DOI: 10.9758/cpn.2020.18.4.493]
  11. Maia TV, Concei����o VA (2018) Dopaminergic disturbances in tourette syndrome: an integrative account. Biol Psychiatry 84:332���344. https://doi.org/10.1016/j.biopsych.2018.02.1172 [DOI: 10.1016/j.biopsych.2018.02.1172]
  12. Goldstein DS, Holmes C, Lopez GJ, Wu T, Sharabi Y (2018) Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkinson���s disease. Park Relat Disord 50:108���112. https://doi.org/10.1016/j.parkreldis.2018.02.023 [DOI: 10.1016/j.parkreldis.2018.02.023]
  13. Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90:675���691. https://doi.org/10.1016/j.neuron.2016.03.038 [DOI: 10.1016/j.neuron.2016.03.038]
  14. Roy T, Chatterjee A, Swarnakar S (2023) Rotenone induced neurodegeneration is mediated via cytoskeleton degradation and necroptosis. BBA Mol Cell Res 1870:119417. https://doi.org/10.1016/j.bbamcr.2022.119417 [DOI: 10.1016/j.bbamcr.2022.119417]
  15. Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson���s disease. BBA 1802:29���44. https://doi.org/10.1016/j.bbadis.2009.08.013 [DOI: 10.1016/j.bbadis.2009.08.013]
  16. Zeng XS, Geng WS, Jia JJ (2018) Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro 10:1759091418777438. https://doi.org/10.1177/1759091418777438 [DOI: 10.1177/1759091418777438]
  17. Chen F, Sugiura Y, Myers KG, Liu Y, Lin W (2010) Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction. Proc Natl Acad Sci USA 107:1636���1641. https://doi.org/10.1073/pnas.0911516107 [DOI: 10.1073/pnas.0911516107]
  18. Luo Y, He J, Yang C, Orange M, Ren X, Blair et al (2018) UCH-L1 promotes invasion of breast cancer cells through activating Akt signaling pathway. J Cell Biochem 119:691���700. https://doi.org/10.1002/jcb.26232
  19. Weber B, Schaper C, Wang Y, Scholz J, Bein B (2009) Interaction of the ubiquitin carboxyl terminal esterase L1 with alpha(2)-adrenergic receptors inhibits agonist-mediated p44/42 MAP kinase activation. Cell Signal 21:151���1521. https://doi.org/10.1016/j.cellsig.2009.05.011 [DOI: 10.1016/j.cellsig.2009.05.011]
  20. Hussain S, Bedekovics T, Ali A, Zaid O, May DG, Roux KJ et al (2019) A cysteine near the C-terminus of UCH-L1 is dispensable for catalytic activity but is required to promote AKT phosphorylation, eIF4F assembly, and malignant B-cell survival. Cell Death Discov 5:15. https://doi.org/10.1038/s41420-019-0231-1 [DOI: 10.1038/s41420-019-0231-1]
  21. Bellani S, Mescola A, Ronzitti G, Tsushima H, Tilve S, Canale C et al (2014) GRP78 clustering at the cell surface of neurons transduces the action of exogenous alpha-synuclein. Cell Death Differ 21:1971���1983. https://doi.org/10.1038/cdd.2014.111 [DOI: 10.1038/cdd.2014.111]
  22. Sch��nhofen P, de Medeiros LM, Chatain CP, Bristot IJ, Klamt F (2014) Cofilin/actin rod formation by dysregulation of cofilin-1 activity as a central initial step in neurodegeneration. Mini Rev Med Chem 14:393���400. https://doi.org/10.2174/1389557514666140506161458 [DOI: 10.2174/1389557514666140506161458]
  23. Choudhary P, Roy T, Chatterjee A, Mishra VK, Pant S, Swarnakar S (2022) Melatonin rescues swim stress induced gastric ulceration by inhibiting matrix metalloproteinase-3 via down-regulation of inflammatory signaling cascade. Life Sci 297:120426. https://doi.org/10.1016/j.lfs.2022.120426 [DOI: 10.1016/j.lfs.2022.120426]
  24. Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C et al (2021) Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: pathophysiological and therapeutic perspectives. Int J Mol Sci 22:1413. https://doi.org/10.3390/ijms22031413 [DOI: 10.3390/ijms22031413]
  25. Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M (2010) Differentiation of mouse neuro 2A cells into dopamine neurons. J Neurosci Methods 186(1):60���67. https://doi.org/10.1016/j.jneumeth.2009.11.004 [DOI: 10.1016/j.jneumeth.2009.11.004]
  26. Hedges DM, Yorgason JT, Perez AW, Schilaty ND, Williams BM, Watt RK et al (2020) Spontaneous formation of melanin from dopamine in the presence of Iron. Antioxid (Basel) 9:1285. https://doi.org/10.3390/antiox9121285 [DOI: 10.3390/antiox9121285]
  27. Khan FH, Sen T, Maiti AK, Jana S, Chatterjee U, Chakrabarti S (2005) Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson���s disease. BBA 1741:65���74. https://doi.org/10.1016/j.bbadis.2005.03.013 [DOI: 10.1016/j.bbadis.2005.03.013]
  28. Harshkova D, Zieli��ska E, Aksmann A (2019) Optimization of a microplate reader method for the analysis of changes in mitochondrial membrane potential in Chlamydomonas reinhardtii cells using the fluorochrome JC-1. J Appl Phycol 31:3691���3697. https://doi.org/10.1007/s10811-019-01860-3 [DOI: 10.1007/s10811-019-01860-3]
  29. Morciano G, Sarti AC, Marchi S, Missiroli S, Falzoni S, Raffaghello L et al (2017) Use of luciferase probes to measure ATP in living cells and animals. Nat Protoc 12:1542���1562. https://doi.org/10.1038/nprot.2017.052 [DOI: 10.1038/nprot.2017.052]
  30. Iqbal H, Akins DR, Kenedy MR (2018) Co-immunoprecipitation for identifying protein-protein interactions in Borrelia burgdorferi. Methods Mol Biol 1690:47���55. https://doi.org/10.1007/978-1-4939-7383-5_4 [DOI: 10.1007/978-1-4939-7383-5_4]
  31. Guo J, Zhao X, Li Y, Li G, Liu X (2018) Damage to dopaminergic neurons by oxidative stress in Parkinson���s disease (Review). Int J Mol Med 41:1817���1825. https://doi.org/10.3892/ijmm.2018.3406 [DOI: 10.3892/ijmm.2018.3406]
  32. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK (2018) Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 122:877���902. https://doi.org/10.1161/CIRCRESAHA.117.311401 [DOI: 10.1161/CIRCRESAHA.117.311401]
  33. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F et al (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. https://doi.org/10.1155/2019/5080843 [DOI: 10.1155/2019/5080843]
  34. Zucca FA, Segura-Aguilar J, Ferrari E, Mu��oz P, Paris I, Sulzer D et al (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson���s disease. Prog Neurobiol 155:96���119. https://doi.org/10.1016/j.pneurobio.2015.09.012 [DOI: 10.1016/j.pneurobio.2015.09.012]
  35. Segura-Aguilar J, Paris I, Mu��oz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson���s disease. J Neurochem 129:898���915. https://doi.org/10.1111/jnc.12686 [DOI: 10.1111/jnc.12686]
  36. Tanwar S, Thakur V, Parsad D (2022) Dopamine toxicity contributes to melanocyte loss via melanocytorrhagy: an in vitro study. Int J Dermatol 61:1253���1261. https://doi.org/10.1111/ijd.16166 [DOI: 10.1111/ijd.16166]
  37. Zamaraeva MV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, Okada Y (2005) Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ 12:1390���1397. https://doi.org/10.1038/sj.cdd.4401661 [DOI: 10.1038/sj.cdd.4401661]
  38. Mehra S, Sahay S, Maji SK (2019) ��-Synuclein misfolding and aggregation: implications in Parkinson���s disease pathogenesis. BBA Proteins Proteom 1867:890���908. https://doi.org/10.1016/j.bbapap.2019.03.001 [DOI: 10.1016/j.bbapap.2019.03.001]
  39. Park JH, Burgess JD, Faroqi AH, DeMeo NN, Fiesel FC, Springer W et al (2020) Alpha-synuclein-induced mitochondrial dysfunction is mediated via a Sirtuin 3-dependent pathway. Mol Neurodegener 15:5. https://doi.org/10.1186/s13024-019-0349-x [DOI: 10.1186/s13024-019-0349-x]
  40. Sarkar S, Bardai F, Olsen AL, Lohr KM, Zhang YY, Feany MB (2021) Oligomerization of Lrrk controls actin severing and ��-synuclein neurotoxicity in vivo. Mol Neurodegener 16:33. https://doi.org/10.1186/s13024-021-00454-3 [DOI: 10.1186/s13024-021-00454-3]
  41. Shehjar F, Almarghalani DA, Mahajan R, Hasan SA, Shah ZA (2024) The multifaceted role of Cofilin in neurodegeneration and stroke: insights into pathogenesis and targeting as a therapy. Cells 13(2):188. https://doi.org/10.3390/cells13020188 [DOI: 10.3390/cells13020188]
  42. Singh D, Srivastava SK, Chaudhuri TK, Upadhyay G (2015) Multifaceted role of matrix metalloproteinases (MMPs). Front Mol Biosci 2:19. https://doi.org/10.3389/fmolb.2015.00019 [DOI: 10.3389/fmolb.2015.00019]
  43. Xu YL, Wang DB, Liu QF, Chen YH, Yang Z (2010) Silencing of cofilin-1 gene attenuates biological behaviours of stromal cells derived from eutopic endometria of women with endometriosis. Hum Reprod 25(10):2480���2488. https://doi.org/10.1093/humrep/deq197 [DOI: 10.1093/humrep/deq197]
  44. Wang XB, Bozdagi O, Nikitczuk JS, Zhai ZW, Zhou Q, Huntley GW (2008) Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc Natl Acad Sci U S A 105(49):19520���19525. https://doi.org/10.1073/pnas.0807248105 [DOI: 10.1073/pnas.0807248105]

Grants

  1. PDF/2017/001918/LS/Science and Engineering Research Board

MeSH Term

Animals
Mice
Ubiquitin Thiolesterase
Dopamine
Reactive Oxygen Species
Cell Line, Tumor
Matrix Metalloproteinase 9
Neuroblastoma
Actin Depolymerizing Factors
Apoptosis
Cell Death

Chemicals

Ubiquitin Thiolesterase
Dopamine
Reactive Oxygen Species
Matrix Metalloproteinase 9
Uchl1 protein, mouse
Mmp9 protein, mouse
Actin Depolymerizing Factors

Word Cloud

Created with Highcharts 10.0.0DAdeathcytoskeletonUCHL1MMP9concentrationneuronalinteractionscellscellaltereddiseasePDleadsdopamineelevatedamongproteinsN2Aproductszymographyco-immunoprecipitationstudiesobservedalsoCofilininteractionDopaminedopaminergicneuronshallmarkeventParkinson'sincreasedmicro-environmentKeepingmindintendunderstandimpactmolecularstabilityuseddifferentiatedexposed100��M24 hEvaluationsmeasurementoxidationreactiveoxygenspeciesROSconventionalRT-PCRwesternblottingreversemitochondrialtransmembranepotentialconfocalimagingin-silicoperformedthereonsignificantnumberviableunderwentROS-dependentapoptoticmediaconcentrationstranscriptionalpatternalpha-synucleincofilingenesrespectivegeneactivityexpressionmatrixmetalloproteinases9involvedneuro-inflammationenhanceduponDA-exposureexposureleddegradationactinsilicorevealeddopamine-richmicroenvironmentresultvalidatedexperimentsCollectivelyobservationsmurineneuroblastomasuggesttoxicityalterspatternsintracellulardegradesfinallystudyunveilsnewfrontiertreatmentpavingwaydevelopmentspecificdrugstargetingproteinToxicityInducesROS-DependentDeathMurineNeuroblastomaCells:ImpactInteractionsActinAlpha-synucleinMitochondrialdysfunctionParkinson���sProtein-protein

Similar Articles

Cited By

No available data.