Unlocking the power of time-since-infection models: data augmentation for improved instantaneous reproduction number estimation.

Jiasheng Shi, Yizhao Zhou, Jing Huang
Author Information
  1. Jiasheng Shi: School of Data Science, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Shenzhen, 518172, China.
  2. Yizhao Zhou: AstraZeneca, 1728-1746 West Nanjing Road, Shanghai, 200040, China.
  3. Jing Huang: Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 423 Guardian Drive, Philadelphia, Pennsylvania, 19014, United States. ORCID

Abstract

The time-since-infection (TSI) models, which use disease surveillance data to model infectious diseases, have become increasingly popular due to their flexibility and capacity to address complex disease control questions. However, a notable limitation of TSI models is their primary reliance on incidence data. Even when hospitalization data are available, existing TSI models have not been crafted to improve the estimation of disease transmission or to estimate hospitalization-related parameters-metrics crucial for understanding a pandemic and planning hospital resources. Moreover, their dependence on reported infection data makes them vulnerable to variations in data quality. In this study, we advance TSI models by integrating hospitalization data, marking a significant step forward in modeling with TSI models. We introduce hospitalization propensity parameters to jointly model incidence and hospitalization data. We use a composite likelihood function to accommodate complex data structure and a Monte Carlo expectation-maximization algorithm to estimate model parameters. We analyze COVID-19 data to estimate disease transmission, assess risk factor impacts, and calculate hospitalization propensity. Our model improves the accuracy of estimating the instantaneous reproduction number in TSI models, particularly when hospitalization data is of higher quality than incidence data. It enables the estimation of key infectious disease parameters without relying on contact tracing data and provides a foundation for integrating TSI models with other infectious disease models.

Keywords

References

  1. N Engl J Med. 2020 Mar 26;382(13):1199-1207 [PMID: 31995857]
  2. Science. 2020 Aug 28;369(6507):1106-1109 [PMID: 32694200]
  3. Biometrics. 1988 Dec;44(4):1019-31 [PMID: 3148334]
  4. Nature. 2005 Nov 17;438(7066):355-9 [PMID: 16292310]
  5. Nat Commun. 2022 Dec 13;13(1):7727 [PMID: 36513688]
  6. Nat Commun. 2023 Aug 29;14(1):5270 [PMID: 37644012]
  7. Math Biosci. 2007 Jul;208(1):300-11 [PMID: 17174352]
  8. N Engl J Med. 2014 Oct 16;371(16):1481-95 [PMID: 25244186]
  9. PLoS Comput Biol. 2022 Oct 10;18(10):e1010618 [PMID: 36215319]
  10. Am J Epidemiol. 2013 Nov 1;178(9):1505-12 [PMID: 24043437]
  11. Am J Epidemiol. 2004 Sep 15;160(6):509-16 [PMID: 15353409]
  12. J Am Stat Assoc. 2021;116(536):1578-1582 [PMID: 35645434]
  13. Biometrics. 2021 Sep;77(3):929-941 [PMID: 32627172]
  14. PLoS One. 2007 Aug 22;2(8):e758 [PMID: 17712406]
  15. BMJ. 2021 Nov 17;375:e068302 [PMID: 34789505]
  16. J Am Stat Assoc. 2021;116(536):1561-1577 [PMID: 37206108]
  17. PLoS Comput Biol. 2020 Dec 10;16(12):e1008409 [PMID: 33301457]
  18. PLOS Digit Health. 2022 Jun 27;1(6):e0000052 [PMID: 36812522]
  19. MMWR Morb Mortal Wkly Rep. 2020 Apr 03;69(13):382-386 [PMID: 32240123]
  20. Lancet Infect Dis. 2020 Jul;20(7):793-802 [PMID: 32247326]
  21. Annu Rev Public Health. 2022 Apr 5;43:271-291 [PMID: 34982587]
  22. JAMA Netw Open. 2020 Jul 1;3(7):e2016099 [PMID: 32701162]
  23. Nat Med. 2020 Apr;26(4):506-510 [PMID: 32284616]
  24. JAMA. 2020 May 19;323(19):1915-1923 [PMID: 32275295]

Grants

  1. R01 HD099348/NICHD NIH HHS
  2. U01 CK000674/NCEZID CDC HHS
  3. U01CK000674/CDC HHS
  4. R01HD099348/NIH HHS

MeSH Term

Humans
COVID-19
Hospitalization
Models, Statistical
SARS-CoV-2
Monte Carlo Method
Incidence
Basic Reproduction Number

Word Cloud

Created with Highcharts 10.0.0datamodelshospitalizationTSIdiseasemodelinfectiousincidenceestimationtransmissionestimatepropensityparameterstime-since-infectionusecomplexqualityintegratingcompositelikelihoodfunctioninstantaneousreproductionnumbersurveillancediseasesbecomeincreasinglypopulardueflexibilitycapacityaddresscontrolquestionsHowevernotablelimitationprimaryrelianceEvenavailableexistingcraftedimprovehospitalization-relatedparameters-metricscrucialunderstandingpandemicplanninghospitalresourcesMoreoverdependencereportedinfectionmakesvulnerablevariationsstudyadvancemarkingsignificantstepforwardmodelingintroducejointlyaccommodatestructureMonteCarloexpectation-maximizationalgorithmanalyzeCOVID-19assessriskfactorimpactscalculateimprovesaccuracyestimatingparticularlyhigherenableskeywithoutrelyingcontacttracingprovidesfoundationUnlockingpowermodels:augmentationimprovedtimediagnosis

Similar Articles

Cited By

No available data.