Longitudinal functional brain connectivity maturation in premature newborn infants: Modulatory influence of early music enrichment.

Annemijn Van Der Veek, Serafeim Loukas, Lara Lordier, Joana Sa de Almeida, Manuela Filippa, François Lazeyras, Dimitri Van De Ville, Petra S Hüppi
Author Information
  1. Annemijn Van Der Veek: Division of Development and Growth, Department of Woman, Child and Adolescent, University of Geneva, Geneva, Switzerland.
  2. Serafeim Loukas: Division of Development and Growth, Department of Woman, Child and Adolescent, University of Geneva, Geneva, Switzerland.
  3. Lara Lordier: Division of Development and Growth, Department of Woman, Child and Adolescent, University of Geneva, Geneva, Switzerland.
  4. Joana Sa de Almeida: Division of Development and Growth, Department of Woman, Child and Adolescent, University of Geneva, Geneva, Switzerland.
  5. Manuela Filippa: Division of Development and Growth, Department of Woman, Child and Adolescent, University of Geneva, Geneva, Switzerland.
  6. François Lazeyras: Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
  7. Dimitri Van De Ville: Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
  8. Petra S Hüppi: Division of Development and Growth, Department of Woman, Child and Adolescent, University of Geneva, Geneva, Switzerland.

Abstract

Premature birth affects brain maturation, illustrated by altered brain functional connectivity at term equivalent age (TEA) and alters neurobehavioral outcome. To correct early developmental differences and improve neurological outcome, music during the neonatal intensive care unit (NICU) stay has been proposed as an auditory enrichment with modulatory effects on functional and structural brain development, but longitudinal effects of such interventions have not been studied so far. We longitudinally investigated resting-state functional connectivity (RS-FC) maturation in preterm infants (n = 43). Data-driven Independent Component Analyses (ICA) were performed on scans obtained at 33- and 40-week gestational age (GA), determining the presence of distinct resting-state networks (RSNs). Connectome analysis "accordance measure" quantitively examined the RS-FC both at 33- and 40-week GA. Further comparing the internetwork RS-FC at 33- and 40-week GA provided a circuitry of interest (COI) for significant maturational changes in which the effects on the RS-FC of a music intervention were tested. The connectome analyses resulted in a COI of RS-FC connections significantly maturing from 33 to 40 weeks GA, namely between the thalamic/brainstem and prefrontal-limbic, salience, sensorimotor, auditory, and prefrontal cortical networks; between the prefrontal-limbic and cerebellar, visual and left hemispheric precuneus networks; between the salience and visual, and cerebellar networks; and between the sensorimotor and auditory, and posterior cingulate/precuneus networks. The infants exposed to music exhibited significantly increased maturation in RS-FC between the thalamic/brainstem and salience networks, compared with controls. This study exemplifies that preterm infant RS-FC maturation is modulated through NICU music exposure, highlighting the importance of environmental enrichment for neurodevelopment in premature newborns.

Keywords

References

  1. Sci Transl Med. 2013 Feb 20;5(173):173ra24 [PMID: 23427244]
  2. Int J Environ Res Public Health. 2021 Aug 13;18(16): [PMID: 34444304]
  3. Neuroimage. 2013 Jul 15;75:187-194 [PMID: 23501049]
  4. J Neurosci. 2001 Jan 15;21(2):700-12 [PMID: 11160449]
  5. Neuroimage. 2019 Jan 15;185:664-684 [PMID: 29990581]
  6. Pediatr Res. 1999 Apr;45(4 Pt 1):447-58 [PMID: 10203134]
  7. Neuropsychologia. 2010 Oct;48(12):3416-29 [PMID: 20619280]
  8. Neuroimage Clin. 2018 Jul 23;20:267-274 [PMID: 30101058]
  9. Neuroimage. 2005 Oct 1;27(4):824-34 [PMID: 15982902]
  10. Neuroimage. 2020 Oct 1;219:117043 [PMID: 32534962]
  11. Hum Brain Mapp. 2016 Nov;37(11):4158-4178 [PMID: 27510837]
  12. Cereb Cortex Commun. 2020 Apr 03;1(1):tgaa008 [PMID: 34296089]
  13. Dev Cogn Neurosci. 2019 Jun;37:100604 [PMID: 30581123]
  14. Front Neurosci. 2017 Apr 27;11:233 [PMID: 28496398]
  15. Int J Dev Neurosci. 2012 Feb;30(1):11-7 [PMID: 22044604]
  16. Nat Rev Neurosci. 2013 May;14(5):365-76 [PMID: 23571845]
  17. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4297-301 [PMID: 2726773]
  18. Neuroimage. 2018 Feb 15;167:11-22 [PMID: 29122720]
  19. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4758-63 [PMID: 20176953]
  20. Neuroimage. 2015 Mar;108:144-50 [PMID: 25528658]
  21. Sci Rep. 2017 Jan 09;7:39286 [PMID: 28067865]
  22. Front Aging Neurosci. 2018 Jul 16;10:209 [PMID: 30061823]
  23. Brain Behav. 2020 Oct;10(10):e01786 [PMID: 32790242]
  24. Neuroimage Clin. 2020;27:102275 [PMID: 32480286]
  25. J Neurosci. 2007 Feb 28;27(9):2349-56 [PMID: 17329432]
  26. Front Neurosci. 2023 Sep 01;17:1214080 [PMID: 37719160]
  27. Netw Neurosci. 2022 Jul 01;6(3):702-721 [PMID: 36204420]
  28. Front Syst Neurosci. 2010 Jun 17;4: [PMID: 20725534]
  29. Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):12103-12108 [PMID: 31138687]
  30. Curr Opin Neurol. 2014 Apr;27(2):142-8 [PMID: 24553463]
  31. Cereb Cortex. 2016 Jan;26(1):322-333 [PMID: 25331596]
  32. Cereb Cortex. 2019 Mar 1;29(3):1174-1184 [PMID: 29420701]
  33. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20015-20 [PMID: 21041625]
  34. Cereb Cortex. 2010 May;20(5):1187-94 [PMID: 19729393]
  35. Front Hum Neurosci. 2012 Jun 21;6:189 [PMID: 22737119]
  36. Dev Cogn Neurosci. 2023 Jun;61:101254 [PMID: 37182337]
  37. Cereb Cortex. 2017 Mar 1;27(3):1949-1963 [PMID: 26941380]
  38. Brain Res. 1979 Mar 16;163(2):195-205 [PMID: 427544]
  39. Psychol Med. 2016 Oct;46(14):3025-3039 [PMID: 27523311]
  40. Cereb Cortex. 2021 May 10;31(6):3034-3046 [PMID: 33558873]
  41. Annu Rev Clin Psychol. 2012;8:49-76 [PMID: 22224834]
  42. Front Hum Neurosci. 2014 Oct 22;8:852 [PMID: 25374531]
  43. Neuroimage. 2008 Sep 1;42(3):1178-84 [PMID: 18598773]
  44. Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6827-32 [PMID: 15096584]
  45. Trends Cogn Sci. 2007 May;11(5):190-2 [PMID: 17360224]
  46. Dev Cogn Neurosci. 2015 Feb;11:96-104 [PMID: 25284273]
  47. Pediatrics. 2008 Dec;122(6):e1193-8 [PMID: 19047222]
  48. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 [PMID: 11209064]
  49. Neural Regen Res. 2019 Aug;14(8):1419-1429 [PMID: 30964068]
  50. J Neurophysiol. 2003 Jan;89(1):634-9 [PMID: 12522208]
  51. Hum Brain Mapp. 2009 Sep;30(9):2731-45 [PMID: 19072897]
  52. Prog Brain Res. 1997;114:553-66 [PMID: 9193166]
  53. Neuroimage Clin. 2018;20:1148-1156 [PMID: 30388598]
  54. Neuroimage. 2021 Jan 15;225:117440 [PMID: 33039621]
  55. Dev Neurobiol. 2020 Mar;80(3-4):111-125 [PMID: 32267069]
  56. Brain. 2021 Aug 17;144(7):2199-2213 [PMID: 33734321]
  57. Dev Cogn Neurosci. 2014 Oct;10:148-59 [PMID: 25282602]
  58. Neuroimage. 2009 Oct 15;48(1):207-16 [PMID: 19527788]
  59. Semin Fetal Neonatal Med. 2006 Dec;11(6):415-22 [PMID: 16962836]
  60. Dev Cogn Neurosci. 2016 Apr;18:12-25 [PMID: 26499255]
  61. Cereb Cortex. 2010 Apr;20(4):953-65 [PMID: 19684249]
  62. Cereb Cortex. 2015 Nov;25(11):4135-45 [PMID: 24935776]
  63. Trends Neurosci. 2006 Jul;29(7):414-418 [PMID: 16713634]
  64. J Neurosci. 2014 Jul 2;34(27):9067-75 [PMID: 24990927]
  65. Sci Rep. 2015 Dec 07;5:17755 [PMID: 26639607]
  66. Rev Neurosci. 2017 Feb 1;28(2):203-218 [PMID: 28085677]
  67. Neuroimage. 2020 Feb 15;207:116391 [PMID: 31765804]
  68. Neuroimage Clin. 2016 Oct 11;12:785-795 [PMID: 27812505]
  69. J Neurosci. 2019 Dec 4;39(49):9716-9724 [PMID: 31685648]
  70. Proc Natl Acad Sci U S A. 2015 May 19;112(20):6485-90 [PMID: 25941391]
  71. Cereb Cortex. 2010 Dec;20(12):2852-62 [PMID: 20237243]
  72. Front Aging Neurosci. 2018 Apr 13;10:94 [PMID: 29706883]
  73. Brain Struct Funct. 2007 Dec;212(3-4):335-46 [PMID: 17962979]
  74. J Neurosci. 2019 Dec 11;39(50):9878-9882 [PMID: 31676604]
  75. Pediatr Res. 2023 Jun;93(7):2072-2080 [PMID: 36329223]
  76. Brain Commun. 2022 Mar 24;4(2):fcac071 [PMID: 35425900]
  77. Cortex. 2021 Feb;135:17-29 [PMID: 33359978]
  78. Dev Cogn Neurosci. 2020 Oct;45:100850 [PMID: 32882651]
  79. Int J Environ Res Public Health. 2023 Feb 03;20(3): [PMID: 36768104]
  80. Ann N Y Acad Sci. 2008 Mar;1124:1-38 [PMID: 18400922]
  81. Sci Rep. 2022 May 4;12(1):7308 [PMID: 35508563]
  82. Neuron. 2014 Nov 19;84(4):681-96 [PMID: 25459408]
  83. Hum Brain Mapp. 2022 Feb 1;43(2):647-664 [PMID: 34738276]
  84. Brain Struct Funct. 2014 Jan;219(1):231-53 [PMID: 23250390]
  85. Front Neuroanat. 2012 Aug 10;6:31 [PMID: 22907994]
  86. J Neurosci. 2009 Jul 1;29(26):8586-94 [PMID: 19571149]
  87. Pediatr Res. 2020 Jan;87(2):249-264 [PMID: 31266053]
  88. Int Rev Neurobiol. 1997;41:31-60 [PMID: 9378595]
  89. Pediatr Res. 2018 Sep;84(3):403-410 [PMID: 29967524]
  90. Early Hum Dev. 2016 Jul;98:29-35 [PMID: 27351350]
  91. J Neurosci. 2014 Nov 12;34(46):15340-6 [PMID: 25392501]
  92. Neurosci Biobehav Rev. 2007;31(8):1157-68 [PMID: 17586047]
  93. Neuroimage. 2011 Jun 1;56(3):1437-52 [PMID: 21376813]
  94. J Cogn Neurosci. 2006 Feb;18(2):227-41 [PMID: 16494683]

Word Cloud

Created with Highcharts 10.0.0RS-FCmaturationmusicnetworksbrainfunctionalGAconnectivityauditoryenrichmenteffectsresting-state33-40-weeksalienceageoutcomeearlyNICUlongitudinalpreterminfantsCOIinterventionconnectomeanalysessignificantlythalamic/brainstemprefrontal-limbicsensorimotorcerebellarvisualprematurePrematurebirthaffectsillustratedalteredtermequivalentTEAaltersneurobehavioralcorrectdevelopmentaldifferencesimproveneurologicalneonatalintensivecareunitstayproposedmodulatorystructuraldevelopmentinterventionsstudiedfarlongitudinallyinvestigatedn=43Data-drivenIndependentComponentAnalysesICAperformedscansobtainedgestationaldeterminingpresencedistinctRSNsConnectomeanalysis"accordancemeasure"quantitivelyexaminedcomparinginternetworkprovidedcircuitryinterestsignificantmaturationalchangestestedresultedconnectionsmaturing3340weeksnamelyprefrontalcorticallefthemisphericprecuneusposteriorcingulate/precuneusexposedexhibitedincreasedcomparedcontrolsstudyexemplifiesinfantmodulatedexposurehighlightingimportanceenvironmentalneurodevelopmentnewbornsLongitudinalnewborninfants:ModulatoryinfluenceprematurityfMRI

Similar Articles

Cited By